In mathematics, a bisymmetric matrix is a square matrix that is symmetric about both of its main diagonals. More precisely, an n × n matrix A is bisymmetric if it satisfies both A = A (it is its own transpose), and AJ = JA, where J is the n × n exchange matrix.
For example, any matrix of the form
is bisymmetric. The associated exchange matrix for this example is
Properties
- Bisymmetric matrices are both symmetric centrosymmetric and symmetric persymmetric.
- The product of two bisymmetric matrices is a centrosymmetric matrix.
- Real-valued bisymmetric matrices are precisely those symmetric matrices whose eigenvalues remain the same aside from possible sign changes following pre- or post-multiplication by the exchange matrix.
- If A is a real bisymmetric matrix with distinct eigenvalues, then the matrices that commute with A must be bisymmetric.
- The inverse of bisymmetric matrices can be represented by recurrence formulas.
References
- Tao, David; Yasuda, Mark (2002). "A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices". SIAM Journal on Matrix Analysis and Applications. 23 (3): 885–895. doi:10.1137/S0895479801386730.
- Yasuda, Mark (2012). "Some properties of commuting and anti-commuting m-involutions". Acta Mathematica Scientia. 32 (2): 631–644. doi:10.1016/S0252-9602(12)60044-7.
- Wang, Yanfeng; Lü, Feng; Lü, Weiran (2018-01-10). "The inverse of bisymmetric matrices". Linear and Multilinear Algebra. 67 (3): 479–489. doi:10.1080/03081087.2017.1422688. ISSN 0308-1087. S2CID 125163794.
This article about matrices is a stub. You can help Misplaced Pages by expanding it. |