Misplaced Pages

Metzler matrix

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Square matrix whose off-diagonal entries are nonnegative

In mathematics, a Metzler matrix is a matrix in which all the off-diagonal components are nonnegative (equal to or greater than zero):

i j x i j 0. {\displaystyle \forall _{i\neq j}\,x_{ij}\geq 0.}

It is named after the American economist Lloyd Metzler.

Metzler matrices appear in stability analysis of time delayed differential equations and positive linear dynamical systems. Their properties can be derived by applying the properties of nonnegative matrices to matrices of the form M + aI, where M is a Metzler matrix.

Definition and terminology

In mathematics, especially linear algebra, a matrix is called Metzler, quasipositive (or quasi-positive) or essentially nonnegative if all of its elements are non-negative except for those on the main diagonal, which are unconstrained. That is, a Metzler matrix is any matrix A which satisfies

A = ( a i j ) ; a i j 0 , i j . {\displaystyle A=(a_{ij});\quad a_{ij}\geq 0,\quad i\neq j.}

Metzler matrices are also sometimes referred to as Z ( ) {\displaystyle Z^{(-)}} -matrices, as a Z-matrix is equivalent to a negated quasipositive matrix.

Properties

The exponential of a Metzler (or quasipositive) matrix is a nonnegative matrix because of the corresponding property for the exponential of a nonnegative matrix. This is natural, once one observes that the generator matrices of continuous-time Markov chains are always Metzler matrices, and that probability distributions are always non-negative.

A Metzler matrix has an eigenvector in the nonnegative orthant because of the corresponding property for nonnegative matrices.

Relevant theorems

See also

Bibliography

Matrix classes
Explicitly constrained entries
Constant
Conditions on eigenvalues or eigenvectors
Satisfying conditions on products or inverses
With specific applications
Used in statistics
Used in graph theory
Used in science and engineering
Related terms


Stub icon

This article about matrices is a stub. You can help Misplaced Pages by expanding it.

Categories: