In measure theory, the Euler measure of a polyhedral set equals the Euler integral of its indicator function.
The magnitude of an Euler measure
By induction, it is easy to show that independent of dimension, the Euler measure of a closed bounded convex polyhedron always equals 1, while the Euler measure of a d-D relative-open bounded convex polyhedron is .
See also
Notes
- Weisstein, Eric W. "Euler Measure". Wolfram MathWorld. Retrieved 7 July 2018.
External links
Measure theory | |||||
---|---|---|---|---|---|
Basic concepts | |||||
Sets | |||||
Types of measures |
| ||||
Particular measures | |||||
Maps | |||||
Main results |
| ||||
Other results |
| ||||
Applications & related |
This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it. |