Misplaced Pages

Grand 600-cell

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Regular star 4-polytope with 600 faces
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (May 2023) (Learn how and when to remove this message)
Grand 600-cell

Orthogonal projection
Type Regular star 4-polytope
Cells 600 {3,3}
Faces 1200 {3}
Edges 720
Vertices 120
Vertex figure {3,5/2}
Schläfli symbol {3,3,5/2}
Coxeter-Dynkin diagram
Symmetry group H4,
Dual Great grand stellated 120-cell
Properties Regular

In geometry, the grand 600-cell or grand polytetrahedron is a regular star 4-polytope with Schläfli symbol {3, 3, 5/2}. It is one of 10 regular Schläfli-Hess polytopes. It is the only one with 600 cells.

It is one of four regular star 4-polytopes discovered by Ludwig Schläfli. It was named by John Horton Conway, extending the naming system by Arthur Cayley for the Kepler-Poinsot solids.

The grand 600-cell can be seen as the four-dimensional analogue of the great icosahedron (which in turn is analogous to the pentagram); both of these are the only regular n-dimensional star polytopes which are derived by performing stellational operations on the pentagonal polytope which has simplectic faces. It can be constructed analogously to the pentagram, its two-dimensional analogue, via the extension of said (n-1)-D simplex faces of the core nD polytope (tetrahedra for the grand 600-cell, equilateral triangles for the great icosahedron, and line segments for the pentagram) until the figure regains regular faces.

The Grand 600-cell is also dual to the great grand stellated 120-cell, mirroring the great icosahedron's duality with the great stellated dodecahedron (which in turn is also analogous to the pentagram); all of these are the final stellations of the n-dimensional "dodecahedral-type" pentagonal polytope.

Related polytopes

It has the same edge arrangement as the great stellated 120-cell, and grand stellated 120-cell, and same face arrangement as the great icosahedral 120-cell.

Orthographic projections by Coxeter planes
H3 A2 / B3 / D4 A3 / B2

See also

References

External links

Regular 4-polytopes
Convex
5-cell8-cell16-cell24-cell120-cell600-cell
  • {3,3,3}
  • pentachoron
  • 4-simplex
  • {4,3,3}
  • tesseract
  • 4-cube
  • {3,3,4}
  • hexadecachoron
  • 4-orthoplex
  • {3,4,3}
  • icositetrachoron
  • octaplex
  • {5,3,3}
  • hecatonicosachoron
  • dodecaplex
  • {3,3,5}
  • hexacosichoron
  • tetraplex
Star
icosahedral
120-cell
small
stellated
120-cell
great
120-cell
grand
120-cell
great
stellated
120-cell
grand
stellated
120-cell
great grand
120-cell
great
icosahedral
120-cell
grand
600-cell
great grand
stellated 120-cell
  • {3,5,⁠5/2⁠}
  • icosaplex
  • {⁠5/2⁠,5,3}
  • stellated dodecaplex
  • {5,⁠5/2⁠,5}
  • great dodecaplex
  • {5,3,⁠5/2⁠}
  • grand dodecaplex
  • {⁠5/2⁠,3,5}
  • great stellated dodecaplex
  • {⁠5/2⁠,5,⁠5/2⁠}
  • grand stellated dodecaplex
  • {5,⁠5/2⁠,3}
  • great grand dodecaplex
  • {3,⁠5/2⁠,5}
  • great icosaplex
  • {3,3,⁠5/2⁠}
  • grand tetraplex
  • {⁠5/2⁠,3,3}
  • great grand stellated dodecaplex
Stub icon

This 4-polytope article is a stub. You can help Misplaced Pages by expanding it.

Categories: