This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (May 2023) (Learn how and when to remove this message) |
Grand 600-cell | |
---|---|
Orthogonal projection | |
Type | Regular star 4-polytope |
Cells | 600 {3,3} |
Faces | 1200 {3} |
Edges | 720 |
Vertices | 120 |
Vertex figure | {3,5/2} |
Schläfli symbol | {3,3,5/2} |
Coxeter-Dynkin diagram | |
Symmetry group | H4, |
Dual | Great grand stellated 120-cell |
Properties | Regular |
In geometry, the grand 600-cell or grand polytetrahedron is a regular star 4-polytope with Schläfli symbol {3, 3, 5/2}. It is one of 10 regular Schläfli-Hess polytopes. It is the only one with 600 cells.
It is one of four regular star 4-polytopes discovered by Ludwig Schläfli. It was named by John Horton Conway, extending the naming system by Arthur Cayley for the Kepler-Poinsot solids.
The grand 600-cell can be seen as the four-dimensional analogue of the great icosahedron (which in turn is analogous to the pentagram); both of these are the only regular n-dimensional star polytopes which are derived by performing stellational operations on the pentagonal polytope which has simplectic faces. It can be constructed analogously to the pentagram, its two-dimensional analogue, via the extension of said (n-1)-D simplex faces of the core nD polytope (tetrahedra for the grand 600-cell, equilateral triangles for the great icosahedron, and line segments for the pentagram) until the figure regains regular faces.
The Grand 600-cell is also dual to the great grand stellated 120-cell, mirroring the great icosahedron's duality with the great stellated dodecahedron (which in turn is also analogous to the pentagram); all of these are the final stellations of the n-dimensional "dodecahedral-type" pentagonal polytope.
Related polytopes
It has the same edge arrangement as the great stellated 120-cell, and grand stellated 120-cell, and same face arrangement as the great icosahedral 120-cell.
H3 | A2 / B3 / D4 | A3 / B2 |
---|---|---|
See also
- List of regular polytopes
- Convex regular 4-polytope
- Kepler-Poinsot solids - regular star polyhedron
- Star polygon - regular star polygons
References
- Edmund Hess, (1883) Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder .
- H. S. M. Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8.
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26, Regular Star-polytopes, pp. 404–408)
- Klitzing, Richard. "4D uniform polytopes (polychora) x3o3o5/2o - gax".
External links
- Regular polychora Archived 2003-09-06 at the Wayback Machine
- Discussion on names
- Reguläre Polytope
- The Regular Star Polychora
- The Great 600-cell, a Zome Model Archived 2022-12-17 at the Wayback Machine [sic]
Regular 4-polytopes | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||
|
This 4-polytope article is a stub. You can help Misplaced Pages by expanding it. |