Misplaced Pages

Great grand stellated 120-cell

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Regular Schläfli-Hess 4-polytope with 600 vertices
Great grand stellated 120-cell

Orthogonal projection
Type Schläfli-Hess polychoron
Cells 120 {5/2,3}
Faces 720 {5/2}
Edges 1200
Vertices 600
Vertex figure {3,3}
Schläfli symbol {5/2,3,3}
Coxeter-Dynkin diagram
Symmetry group H4,
Dual Grand 600-cell
Properties Regular
A Zome model

In geometry, the great grand stellated 120-cell or great grand stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,3,3}, one of 10 regular Schläfli-Hess 4-polytopes. It is unique among the 10 for having 600 vertices, and has the same vertex arrangement as the regular convex 120-cell.

It is one of four regular star polychora discovered by Ludwig Schläfli. It is named by John Horton Conway, extending the naming system by Arthur Cayley for the Kepler-Poinsot solids, and the only one containing all three modifiers in the name.

Images

Coxeter plane images
H4 A2 / B3 A3 / B2
Great grand stellated 120-cell, {5/2,3,3}
120-cell, {5,3,3}

As a stellation

The great grand stellated 120-cell is the final stellation of the 120-cell, and is the only Schläfli-Hess polychoron to have the 120-cell for its convex hull. In this sense it is analogous to the three-dimensional great stellated dodecahedron, which is the final stellation of the dodecahedron and the only Kepler-Poinsot polyhedron to have the dodecahedron for its convex hull. Indeed, the great grand stellated 120-cell is dual to the grand 600-cell, which could be taken as a 4D analogue of the great icosahedron, dual of the great stellated dodecahedron.

The edges of the great grand stellated 120-cell are τ as long as those of the 120-cell core deep inside the polychoron, and they are τ as long as those of the small stellated 120-cell deep within the polychoron.

See also

References

External links

Regular 4-polytopes
Convex
5-cell8-cell16-cell24-cell120-cell600-cell
  • {3,3,3}
  • pentachoron
  • 4-simplex
  • {4,3,3}
  • tesseract
  • 4-cube
  • {3,3,4}
  • hexadecachoron
  • 4-orthoplex
  • {3,4,3}
  • icositetrachoron
  • octaplex
  • {5,3,3}
  • hecatonicosachoron
  • dodecaplex
  • {3,3,5}
  • hexacosichoron
  • tetraplex
Star
icosahedral
120-cell
small
stellated
120-cell
great
120-cell
grand
120-cell
great
stellated
120-cell
grand
stellated
120-cell
great grand
120-cell
great
icosahedral
120-cell
grand
600-cell
great grand
stellated 120-cell
  • {3,5,⁠5/2⁠}
  • icosaplex
  • {⁠5/2⁠,5,3}
  • stellated dodecaplex
  • {5,⁠5/2⁠,5}
  • great dodecaplex
  • {5,3,⁠5/2⁠}
  • grand dodecaplex
  • {⁠5/2⁠,3,5}
  • great stellated dodecaplex
  • {⁠5/2⁠,5,⁠5/2⁠}
  • grand stellated dodecaplex
  • {5,⁠5/2⁠,3}
  • great grand dodecaplex
  • {3,⁠5/2⁠,5}
  • great icosaplex
  • {3,3,⁠5/2⁠}
  • grand tetraplex
  • {⁠5/2⁠,3,3}
  • great grand stellated dodecaplex
Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
Category: