Misplaced Pages

K-convex function

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Mathematical function

K-convex functions, first introduced by Scarf, are a special weakening of the concept of convex function which is crucial in the proof of the optimality of the ( s , S ) {\displaystyle (s,S)} policy in inventory control theory. The policy is characterized by two numbers s and S, S s {\displaystyle S\geq s} , such that when the inventory level falls below level s, an order is issued for a quantity that brings the inventory up to level S, and nothing is ordered otherwise. Gallego and Sethi have generalized the concept of K-convexity to higher dimensional Euclidean spaces.

Definition

Two equivalent definitions are as follows:

Definition 1 (The original definition)

Let K be a non-negative real number. A function g : R R {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } is K-convex if

g ( u ) + z [ g ( u ) g ( u b ) b ] g ( u + z ) + K {\displaystyle g(u)+z\left\leq g(u+z)+K}

for any u , z 0 , {\displaystyle u,z\geq 0,} and b > 0 {\displaystyle b>0} .

Definition 2 (Definition with geometric interpretation)

A function g : R R {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } is K-convex if

g ( λ x + λ ¯ y ) λ g ( x ) + λ ¯ [ g ( y ) + K ] {\displaystyle g(\lambda x+{\bar {\lambda }}y)\leq \lambda g(x)+{\bar {\lambda }}}

for all x y , λ [ 0 , 1 ] {\displaystyle x\leq y,\lambda \in } , where λ ¯ = 1 λ {\displaystyle {\bar {\lambda }}=1-\lambda } .

This definition admits a simple geometric interpretation related to the concept of visibility. Let a 0 {\displaystyle a\geq 0} . A point ( x , f ( x ) ) {\displaystyle (x,f(x))} is said to be visible from ( y , f ( y ) + a ) {\displaystyle (y,f(y)+a)} if all intermediate points ( λ x + λ ¯ y , f ( λ x + λ ¯ y ) ) , 0 λ 1 {\displaystyle (\lambda x+{\bar {\lambda }}y,f(\lambda x+{\bar {\lambda }}y)),0\leq \lambda \leq 1} lie below the line segment joining these two points. Then the geometric characterization of K-convexity can be obtain as:

A function g {\displaystyle g} is K-convex if and only if ( x , g ( x ) ) {\displaystyle (x,g(x))} is visible from ( y , g ( y ) + K ) {\displaystyle (y,g(y)+K)} for all y x {\displaystyle y\geq x} .

Proof of Equivalence

It is sufficient to prove that the above definitions can be transformed to each other. This can be seen by using the transformation

λ = z / ( b + z ) , x = u b , y = u + z . {\displaystyle \lambda =z/(b+z),\quad x=u-b,\quad y=u+z.}

Properties

Property 1

If g : R R {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } is K-convex, then it is L-convex for any L K {\displaystyle L\geq K} . In particular, if g {\displaystyle g} is convex, then it is also K-convex for any K 0 {\displaystyle K\geq 0} .

Property 2

If g 1 {\displaystyle g_{1}} is K-convex and g 2 {\displaystyle g_{2}} is L-convex, then for α 0 , β 0 , g = α g 1 + β g 2 {\displaystyle \alpha \geq 0,\beta \geq 0,\;g=\alpha g_{1}+\beta g_{2}} is ( α K + β L ) {\displaystyle (\alpha K+\beta L)} -convex.

Property 3

If g {\displaystyle g} is K-convex and ξ {\displaystyle \xi } is a random variable such that E | g ( x ξ ) | < {\displaystyle E|g(x-\xi )|<\infty } for all x {\displaystyle x} , then E g ( x ξ ) {\displaystyle Eg(x-\xi )} is also K-convex.

Property 4

If g : R R {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } is K-convex, restriction of g {\displaystyle g} on any convex set D R {\displaystyle \mathbb {D} \subset \mathbb {R} } is K-convex.

Property 5

If g : R R {\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} } is a continuous K-convex function and g ( y ) {\displaystyle g(y)\rightarrow \infty } as | y | {\displaystyle |y|\rightarrow \infty } , then there exit scalars s {\displaystyle s} and S {\displaystyle S} with s S {\displaystyle s\leq S} such that

  • g ( S ) g ( y ) {\displaystyle g(S)\leq g(y)} , for all y R {\displaystyle y\in \mathbb {R} } ;
  • g ( S ) + K = g ( s ) < g ( y ) {\displaystyle g(S)+K=g(s)<g(y)} , for all y < s {\displaystyle y<s} ;
  • g ( y ) {\displaystyle g(y)} is a decreasing function on ( , s ) {\displaystyle (-\infty ,s)} ;
  • g ( y ) g ( z ) + K {\displaystyle g(y)\leq g(z)+K} for all y , z {\displaystyle y,z} with s y z {\displaystyle s\leq y\leq z} .

References

  1. Scarf, H. (1960). The Optimality of (S, s) Policies in the Dynamic Inventory Problem. Stanford, CA: Stanford University Press. p. Chapter 13.
  2. Gallego, G. and Sethi, S. P. (2005). K-convexity in ℜ. Journal of Optimization Theory & Applications, 127(1):71-88.
  3. Kolmogorov, A. N.; Fomin, S. V. (1970). Introduction to Real Analysis. New York: Dover Publications Inc.
  4. Sethi S P, Cheng F. Optimality of (s, S) Policies in Inventory Models with Markovian Demand. INFORMS, 1997.

Further reading

Convex analysis and variational analysis
Basic concepts
Topics (list)
Maps
Main results (list)
Sets
Series
Duality
Applications and related
Categories: