Misplaced Pages

Ekeland's variational principle

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematical analysis, Ekeland's variational principle, discovered by Ivar Ekeland, is a theorem that asserts that there exist nearly optimal solutions to some optimization problems.

Ekeland's principle can be used when the lower level set of a minimization problems is not compact, so that the Bolzano–Weierstrass theorem cannot be applied. The principle relies on the completeness of the metric space.

The principle has been shown to be equivalent to completeness of metric spaces. In proof theory, it is equivalent to Π
1CA0 over RCA0
, i.e. relatively strong.

It also leads to a quick proof of the Caristi fixed point theorem.

History

Ekeland was associated with the Paris Dauphine University when he proposed this theorem.

Ekeland's variational principle

Preliminary definitions

A function f : X R { , + } {\displaystyle f:X\to \mathbb {R} \cup \{-\infty ,+\infty \}} valued in the extended real numbers R { , + } = [ , + ] {\displaystyle \mathbb {R} \cup \{-\infty ,+\infty \}=} is said to be bounded below if inf f ( X ) = inf x X f ( x ) > {\displaystyle \inf _{}f(X)=\inf _{x\in X}f(x)>-\infty } and it is called proper if it has a non-empty effective domain, which by definition is the set dom f   = def   { x X : f ( x ) + } , {\displaystyle \operatorname {dom} f~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\{x\in X:f(x)\neq +\infty \},} and it is never equal to . {\displaystyle -\infty .} In other words, a map is proper if is valued in R { + } {\displaystyle \mathbb {R} \cup \{+\infty \}} and not identically + . {\displaystyle +\infty .} The map f {\displaystyle f} is proper and bounded below if and only if < inf f ( X ) + , {\displaystyle -\infty <\inf _{}f(X)\neq +\infty ,} or equivalently, if and only if inf f ( X ) R . {\displaystyle \inf _{}f(X)\in \mathbb {R} .}

A function f : X [ , + ] {\displaystyle f:X\to } is lower semicontinuous at a given x 0 X {\displaystyle x_{0}\in X} if for every real y < f ( x 0 ) {\displaystyle y<f\left(x_{0}\right)} there exists a neighborhood U {\displaystyle U} of x 0 {\displaystyle x_{0}} such that f ( u ) > y {\displaystyle f(u)>y} for all u U . {\displaystyle u\in U.} A function is called lower semicontinuous if it is lower semicontinuous at every point of X , {\displaystyle X,} which happens if and only if { x X :   f ( x ) > y } {\displaystyle \{x\in X:~f(x)>y\}} is an open set for every y R , {\displaystyle y\in \mathbb {R} ,} or equivalently, if and only if all of its lower level sets { x X :   f ( x ) y } {\displaystyle \{x\in X:~f(x)\leq y\}} are closed.

Statement of the theorem

Ekeland's variational principle — Let ( X , d ) {\displaystyle (X,d)} be a complete metric space and let f : X R { + } {\displaystyle f:X\to \mathbb {R} \cup \{+\infty \}} be a proper lower semicontinuous function that is bounded below (so inf f ( X ) R {\displaystyle \inf _{}f(X)\in \mathbb {R} } ). Pick x 0 X {\displaystyle x_{0}\in X} such that f ( x 0 ) R {\displaystyle f(x_{0})\in \mathbb {R} } (or equivalently, f ( x 0 ) + {\displaystyle f(x_{0})\neq +\infty } ) and fix any real ε > 0. {\displaystyle \varepsilon >0.} There exists some v X {\displaystyle v\in X} such that f ( v )     f ( x 0 ) ε d ( x 0 , v ) {\displaystyle f(v)~\leq ~f\left(x_{0}\right)-\varepsilon \;d\left(x_{0},v\right)} and for every x X {\displaystyle x\in X} other than v {\displaystyle v} (that is, x v {\displaystyle x\neq v} ), f ( v )   <   f ( x ) + ε d ( v , x ) . {\displaystyle f(v)~<~f(x)+\varepsilon \;d(v,x).}

Proof

Define a function G : X × X R { + } {\displaystyle G:X\times X\to \mathbb {R} \cup \{+\infty \}} by G ( x , y )   = def   f ( x ) + ε d ( x , y ) {\displaystyle G(x,y)~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~f(x)+\varepsilon \;d(x,y)} which is lower semicontinuous because it is the sum of the lower semicontinuous function f {\displaystyle f} and the continuous function ( x , y ) ε d ( x , y ) . {\displaystyle (x,y)\mapsto \varepsilon \;d(x,y).} Given z X , {\displaystyle z\in X,} denote the functions with one coordinate fixed at z {\displaystyle z} by G z   = def   G ( z , ) : X R { + }  and  {\displaystyle G_{z}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~G(z,\cdot ):X\to \mathbb {R} \cup \{+\infty \}\;{\text{ and }}} G z   = def   G ( , z ) : X R { + } {\displaystyle G^{z}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~G(\cdot ,z):X\to \mathbb {R} \cup \{+\infty \}} and define the set F ( z )   = def   { y X : G z ( y ) f ( z ) }   =   { y X : f ( y ) + ε d ( y , z ) f ( z ) } , {\displaystyle F(z)~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\left\{y\in X:G^{z}(y)\leq f(z)\right\}~=~\{y\in X:f(y)+\varepsilon \;d(y,z)\leq f(z)\},} which is not empty since z F ( z ) . {\displaystyle z\in F(z).} An element v X {\displaystyle v\in X} satisfies the conclusion of this theorem if and only if F ( v ) = { v } . {\displaystyle F(v)=\{v\}.} It remains to find such an element.

It may be verified that for every x X , {\displaystyle x\in X,}

  1. F ( x ) {\displaystyle F(x)} is closed (because G x = def G ( , x ) : X R { + } {\displaystyle G^{x}\,{\stackrel {\scriptscriptstyle {\text{def}}}{=}}\,G(\cdot ,x):X\to \mathbb {R} \cup \{+\infty \}} is lower semicontinuous);
  2. if x dom f {\displaystyle x\notin \operatorname {dom} f} then F ( x ) = X ; {\displaystyle F(x)=X;}
  3. if x dom f {\displaystyle x\in \operatorname {dom} f} then x F ( x ) dom f ; {\displaystyle x\in F(x)\subseteq \operatorname {dom} f;} in particular, x 0 F ( x 0 ) dom f ; {\displaystyle x_{0}\in F\left(x_{0}\right)\subseteq \operatorname {dom} f;}
  4. if y F ( x ) {\displaystyle y\in F(x)} then F ( y ) F ( x ) . {\displaystyle F(y)\subseteq F(x).}

Let s 0 = inf x F ( x 0 ) f ( x ) , {\displaystyle s_{0}=\inf _{x\in F\left(x_{0}\right)}f(x),} which is a real number because f {\displaystyle f} was assumed to be bounded below. Pick x 1 F ( x 0 ) {\displaystyle x_{1}\in F\left(x_{0}\right)} such that f ( x 1 ) < s 0 + 2 1 . {\displaystyle f\left(x_{1}\right)<s_{0}+2^{-1}.} Having defined s n 1 {\displaystyle s_{n-1}} and x n , {\displaystyle x_{n},} let s n   = def   inf x F ( x n ) f ( x ) {\displaystyle s_{n}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\inf _{x\in F\left(x_{n}\right)}f(x)} and pick x n + 1 F ( x n ) {\displaystyle x_{n+1}\in F\left(x_{n}\right)} such that f ( x n + 1 ) < s n + 2 ( n + 1 ) . {\displaystyle f\left(x_{n+1}\right)<s_{n}+2^{-(n+1)}.} For any n 0 , {\displaystyle n\geq 0,} x n + 1 F ( x n ) {\displaystyle x_{n+1}\in F\left(x_{n}\right)} guarantees that s n f ( x n + 1 ) {\displaystyle s_{n}\leq f\left(x_{n+1}\right)} and F ( x n + 1 ) F ( x n ) , {\displaystyle F\left(x_{n+1}\right)\subseteq F\left(x_{n}\right),} which in turn implies s n + 1 s n {\displaystyle s_{n+1}\geq s_{n}} and thus also f ( x n + 2 ) s n + 1 s n . {\displaystyle f\left(x_{n+2}\right)\geq s_{n+1}\geq s_{n}.} So if n 1 {\displaystyle n\geq 1} then x n + 1 F ( x n ) = def { y X : f ( y ) + ε d ( y , x n ) f ( x n ) } {\displaystyle x_{n+1}\in F\left(x_{n}\right){\stackrel {\scriptscriptstyle {\text{def}}}{=}}\left\{y\in X:f(y)+\varepsilon \;d\left(y,x_{n}\right)\leq f\left(x_{n}\right)\right\}} and f ( x n + 1 ) s n 1 , {\displaystyle f\left(x_{n+1}\right)\geq s_{n-1},} which guarantee ε d ( x n + 1 , x n )     f ( x n ) f ( x n + 1 )     f ( x n ) s n 1   <   1 2 n . {\displaystyle \varepsilon \;d\left(x_{n+1},x_{n}\right)~\leq ~f\left(x_{n}\right)-f\left(x_{n+1}\right)~\leq ~f\left(x_{n}\right)-s_{n-1}~<~{\frac {1}{2^{n}}}.}

It follows that for all positive integers n , p 1 , {\displaystyle n,p\geq 1,} d ( x n + p , x n )     2 ε 1 2 n , {\displaystyle d\left(x_{n+p},x_{n}\right)~\leq ~2\;{\frac {\varepsilon ^{-1}}{2^{n}}},} which proves that x := ( x n ) n = 0 {\displaystyle x_{\bullet }:=\left(x_{n}\right)_{n=0}^{\infty }} is a Cauchy sequence. Because X {\displaystyle X} is a complete metric space, there exists some v X {\displaystyle v\in X} such that x {\displaystyle x_{\bullet }} converges to v . {\displaystyle v.} For any n 0 , {\displaystyle n\geq 0,} since F ( x n ) {\displaystyle F\left(x_{n}\right)} is a closed set that contain the sequence x n , x n + 1 , x n + 2 , , {\displaystyle x_{n},x_{n+1},x_{n+2},\ldots ,} it must also contain this sequence's limit, which is v ; {\displaystyle v;} thus v F ( x n ) {\displaystyle v\in F\left(x_{n}\right)} and in particular, v F ( x 0 ) . {\displaystyle v\in F\left(x_{0}\right).}

The theorem will follow once it is shown that F ( v ) = { v } . {\displaystyle F(v)=\{v\}.} So let x F ( v ) {\displaystyle x\in F(v)} and it remains to show x = v . {\displaystyle x=v.} Because x F ( x n ) {\displaystyle x\in F\left(x_{n}\right)} for all n 0 , {\displaystyle n\geq 0,} it follows as above that ε d ( x , x n ) 2 n , {\displaystyle \varepsilon \;d\left(x,x_{n}\right)\leq 2^{-n},} which implies that x {\displaystyle x_{\bullet }} converges to x . {\displaystyle x.} Because x {\displaystyle x_{\bullet }} also converges to v {\displaystyle v} and limits in metric spaces are unique, x = v . {\displaystyle x=v.} {\displaystyle \blacksquare } Q.E.D.

For example, if f {\displaystyle f} and ( X , d ) {\displaystyle (X,d)} are as in the theorem's statement and if x 0 X {\displaystyle x_{0}\in X} happens to be a global minimum point of f , {\displaystyle f,} then the vector v {\displaystyle v} from the theorem's conclusion is v := x 0 . {\displaystyle v:=x_{0}.}

Corollaries

Corollary — Let ( X , d ) {\displaystyle (X,d)} be a complete metric space, and let f : X R { + } {\displaystyle f:X\to \mathbb {R} \cup \{+\infty \}} be a lower semicontinuous functional on X {\displaystyle X} that is bounded below and not identically equal to + . {\displaystyle +\infty .} Fix ε > 0 {\displaystyle \varepsilon >0} and a point x 0 X {\displaystyle x_{0}\in X} such that f ( x 0 )     ε + inf x X f ( x ) . {\displaystyle f\left(x_{0}\right)~\leq ~\varepsilon +\inf _{x\in X}f(x).} Then, for every λ > 0 , {\displaystyle \lambda >0,} there exists a point v X {\displaystyle v\in X} such that f ( v )     f ( x 0 ) , {\displaystyle f(v)~\leq ~f\left(x_{0}\right),} d ( x 0 , v )     λ , {\displaystyle d\left(x_{0},v\right)~\leq ~\lambda ,} and, for all x v , {\displaystyle x\neq v,} f ( x ) + ε λ d ( v , x )   >   f ( v ) . {\displaystyle f(x)+{\frac {\varepsilon }{\lambda }}d(v,x)~>~f(v).}

The principle could be thought of as follows: For any point x 0 {\displaystyle x_{0}} which nearly realizes the infimum, there exists another point v {\displaystyle v} , which is at least as good as x 0 {\displaystyle x_{0}} , it is close to x 0 {\displaystyle x_{0}} and the perturbed function, f ( x ) + ε λ d ( v , x ) {\displaystyle f(x)+{\frac {\varepsilon }{\lambda }}d(v,x)} , has unique minimum at v {\displaystyle v} . A good compromise is to take λ := ε {\displaystyle \lambda :={\sqrt {\varepsilon }}} in the preceding result.

See also

References

  1. ^ Ekeland, Ivar (1974). "On the variational principle". J. Math. Anal. Appl. 47 (2): 324–353. doi:10.1016/0022-247X(74)90025-0. ISSN 0022-247X.
  2. Ekeland, Ivar (1979). "Nonconvex minimization problems". Bulletin of the American Mathematical Society. New Series. 1 (3): 443–474. doi:10.1090/S0273-0979-1979-14595-6. MR 0526967.
  3. Ekeland, Ivar; Temam, Roger (1999). Convex analysis and variational problems. Classics in applied mathematics. Vol. 28 (Corrected reprinting of the (1976) North-Holland ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM). pp. 357–373. ISBN 0-89871-450-8. MR 1727362.
  4. ^ Kirk, William A.; Goebel, Kazimierz (1990). Topics in Metric Fixed Point Theory. Cambridge University Press. ISBN 0-521-38289-0.
  5. Sullivan, Francis (October 1981). "A characterization of complete metric spaces". Proceedings of the American Mathematical Society. 83 (2): 345–346. doi:10.1090/S0002-9939-1981-0624927-9. MR 0624927.
  6. Ok, Efe (2007). "D: Continuity I". Real Analysis with Economic Applications (PDF). Princeton University Press. p. 664. ISBN 978-0-691-11768-3. Retrieved January 31, 2009.
  7. Zalinescu 2002, p. 29.
  8. ^ Zalinescu 2002, p. 30.

Bibliography

Convex analysis and variational analysis
Basic concepts
Topics (list)
Maps
Main results (list)
Sets
Series
Duality
Applications and related
Functional analysis (topicsglossary)
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Categories: