Misplaced Pages

Relative risk reduction

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Illustration of two groups: one exposed to a treatment, and one unexposed. Exposed group has smaller risk of adverse outcome (RRR = 0.5).
The group exposed to treatment (left) has the risk of an adverse outcome (black) reduced by 50% (RRR = 0.5) compared to the unexposed group (right).

In epidemiology, the relative risk reduction (RRR) or efficacy is the relative decrease in the risk of an adverse event in the exposed group compared to an unexposed group. It is computed as ( I u I e ) / I u {\displaystyle (I_{u}-I_{e})/I_{u}} , where I e {\displaystyle I_{e}} is the incidence in the exposed group, and I u {\displaystyle I_{u}} is the incidence in the unexposed group. If the risk of an adverse event is increased by the exposure rather than decreased, the term relative risk increase (RRI) is used, and it is computed as ( I e I u ) / I u {\displaystyle (I_{e}-I_{u})/I_{u}} . If the direction of risk change is not assumed, the term relative effect is used, and it is computed in the same way as relative risk increase.

Numerical examples

Risk reduction

Example of risk reduction
Quantity Experimental group (E) Control group (C) Total
Events (E) EE = 15 CE = 100 115
Non-events (N) EN = 135 CN = 150 285
Total subjects (S) ES = EE + EN = 150 CS = CE + CN = 250 400
Event rate (ER) EER = EE / ES = 0.1, or 10% CER = CE / CS = 0.4, or 40%
Variable Abbr. Formula Value
Absolute risk reduction ARR CEREER 0.3, or 30%
Number needed to treat NNT 1 / (CEREER) 3.33
Relative risk (risk ratio) RR EER / CER 0.25
Relative risk reduction RRR (CEREER) / CER, or 1 − RR 0.75, or 75%
Preventable fraction among the unexposed PFu (CEREER) / CER 0.75
Odds ratio OR (EE / EN) / (CE / CN) 0.167

Risk increase

Example of risk increase
Quantity Experimental group (E) Control group (C) Total
Events (E) EE = 75 CE = 100 175
Non-events (N) EN = 75 CN = 150 225
Total subjects (S) ES = EE + EN = 150 CS = CE + CN = 250 400
Event rate (ER) EER = EE / ES = 0.5, or 50% CER = CE / CS = 0.4, or 40%
Variable Abbr. Formula Value
Absolute risk increase ARI EERCER 0.1, or 10%
Number needed to harm NNH 1 / (EERCER) 10
Relative risk (risk ratio) RR EER / CER 1.25
Relative risk increase RRI (EERCER) / CER, or RR − 1 0.25, or 25%
Attributable fraction among the exposed AFe (EERCER) / EER 0.2
Odds ratio OR (EE / EN) / (CE / CN) 1.5

See also

References

  1. Porta, Miquel, ed. (2014). "A Dictionary of Epidemiology". Dictionary of Epidemiology - Oxford Reference. Oxford University Press. doi:10.1093/acref/9780199976720.001.0001. ISBN 9780199976720. Retrieved 2018-05-09.
  2. Szklo, Moyses; Nieto, F. Javier (2019). Epidemiology : beyond the basics (4th. ed.). Burlington, Massachusetts: Jones & Bartlett Learning. p. 97. ISBN 9781284116595. OCLC 1019839414.
  3. J., Rothman, Kenneth (2012). Epidemiology : an introduction (2nd ed.). New York, NY: Oxford University Press. p. 59. ISBN 9780199754557. OCLC 750986180.{{cite book}}: CS1 maint: multiple names: authors list (link)
Clinical research and experimental design
Overview
Controlled study
(EBM I to II-1)
Observational study
(EBM II-2 to II-3)
Measures
OccurrenceIncidence, Cumulative incidence, Prevalence, Point prevalence, Period prevalence
AssociationRisk difference, Number needed to treat, Number needed to harm, Risk ratio, Relative risk reduction, Odds ratio, Hazard ratio
Population impactAttributable fraction among the exposed, Attributable fraction for the population, Preventable fraction among the unexposed, Preventable fraction for the population
OtherClinical endpoint, Virulence, Infectivity, Mortality rate, Morbidity, Case fatality rate, Specificity and sensitivity, Likelihood-ratios, Pre- and post-test probability
Trial/test types
Analysis of clinical trials
Interpretation of results
Categories: