Misplaced Pages

Silicide carbide

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Class of chemical compounds Not to be confused with silicon carbide.

Silicide carbides or carbide silicides are compounds containing anions composed of silicide (Si) and carbide (C) or clusters therof. They can be considered as mixed anion compounds or intermetallic compounds, as silicon could be considered as a semimetal.

Related compounds include the germanide carbides, phosphide silicides, boride carbides and nitride carbides. Other related compounds may contain more condensed anion combinations such as the carbidonitridosilicates with C(SiN3)4 with N bridging between two silicon atoms.

Production

Silicide carbide compounds can be made by heating silicon, graphite, and metal together. It is important to exclude oxygen before and during the reaction. The flux method involves a reaction in a molten metal. Gallium is suitable, because it dissolves carbon and silicon, but does not react with them.

Properties

Silicide carbides are a kind of ceramic, yet they also have metallic properties. They are not as brittle as most ceramics, but are stiffer than metals. They have high melting temperatures.

In air silicide carbide compounds are stable, and are hardly affected by water. The appearance is often metallic grey. When powdered the colour is dark grey.

When ErFe2SiC is dissolved in acid, mostly methane is produced, but the products include some hydrocarbons with two and three carbon atoms.

The lanthanide contraction is evident with the cell sizes for rare earth element silicide carbides.

List

formula system space group unit cell Å, Z volume density comment ref
Al4SiC4 hexagonal P63mc a = 3.2746 c = 21.7081 201.59 band gap 2.2 eV
Ti3SiC2 hexagonal P63/mmc a = 3.064 c = 17.65 Z=2 143.5 4.53 mp 2300°C
Ti5Si3Cx
Y3Si2C2 orthorhombic Cmmm a=3.845 b=15.634 c=4.213 253.3 Pauli paramagnetic

grey metallic air stable

Y5Si3C1.8
Y1.8C2Si8(B12)3 rhombohedral R3m a=10.101, c=16.441, Z=3 1452.7 1.551
YCr2Si2C tetragonal P4/mmm a=3.998 c=5.289 Z=1 Pauli paramagnetic

grey metallic

YCr3Si2C
YMn2SiC orthorhombic Cmcm Z=4
YFe2SiC orthorhombic Cmcm Z=4 270 grey metallic

air stable

YRu2SiC orthorhombic Cmcm Z=4
Ba3Si4C2 tetragonal I4/mcm a = 8.7693 c = 12.3885 semiconductor; contains and
La3Si2C2 orthorhombic Cmmm a=4.039,b=16.884, and c=4.506 307.3 grey metallic

air stable

LaCr2Si2C tetragonal P4/mmm a=4.037 c=5.347 Z=1
La2Fe2Si2C monoclinic C2/m Z=2
Ce3Si2C2 orthorhombic Cmmm a=3.990 b=16.592 c= 4.434 293.5 grey metallic

air stable

?ferromagnetic (TC=10K

CeCr2Si2C tetragonal P4/mmm a=4.020 c=5.284 Z=1 grey metallic
Ce2Fe2Si2C monoclinic C2/m Z=2
CeMo2Si2C
CeRu2SiC orthorhombic Cmcm Z=4
Pr3Si2C2 orthorhombic Cmmm a=3.967 b=16.452 c=4.399 287.1 grey metallic

air stable

ferromagnetic TC=25K

PrCr2Si2C tetragonal P4/mmm a=4.022, c = 5.352 Z=1 86.58 6.00 grey metallic

Si-Si pair bond 2.453 Å

PrMo2Si2C tetragonal P4/mmm a=4.2139 c=5.4093 Z=1 96.1 metallic dark grey
PrRu2SiC orthorhombic Cmcm Z=4
Nd3Si2C2 orthorhombic Cmmm a=3.949 b=16.303 c=4.375 281.7 grey metallic

air stable

ferromagnetic TC=30K

NdCr2Si2C tetragonal P4/mmm a=4.026 c=5.336 Z=1 grey metallic
NdRu2SiC orthorhombic Cmcm Z=4
Sm3Si2C2 orthorhombic Cmmm a=3.913 b=16.073 c=4.316 271.4 grey metallic

air stable

antiferromagnetic TN=19K

SmCr2Si2C tetragonal P4/mmm a=4.011 c=5.321 Z=1 grey metallic
SmMn2SiC orthorhombic Cmcm Z=4
SmFe2SiC orthorhombic Cmcm Z=4 278 grey metallic

air stable

Sm2Fe2Si2C monoclinic C2/m Z=2
SmRu2SiC orthorhombic Cmcm Z=4
Gd3Si2C2 orthorhombic Cmmm a=3.886 b=15.863 c=4.726 grey metallic

air stable

antiferromagnetic TN=50K

GdCr2Si2C tetragonal P4/mmm a=4.007 c=5.324 Z=1 263.6 grey metallic
GdCr3Si2C hexagonal P6/mmm
GdMn2SiC orthorhombic Cmcm Z=4
GdFe2SiC orthorhombic Cmcm Z=4 273 grey metallic

air stable

GdRu2SiC orthorhombic Cmcm a = 3.830, b = 11.069, c = 7.157 Z=4 303.4 8.745 silvery

air stable

Tb3Si2C2 orthorhombic Cmmm a=3.854 c=15.702 c=4.236 256.3 grey metallic

air stable

antiferromagnetic TN=28K

Tb1.8C2Si8(B12)3 rhombohedral R3m a=10.1171, c=16.397, Z=3 1453.4 1.583
TbCr2Si2C tetragonal P4/mmm a=4.002 c=5.314 Z=1 grey metallic
TbCr3Si2C hexagonal P6/mmm
TbMn2SiC orthorhombic Cmcm Z=4
TbFe2SiC orthorhombic Cmcm Z=4 270 grey metallic

air stable

TbRu2SiC orthorhombic Cmcm Z=4
Dy3Si2C2 orthorhombic Cmmm a=3.838 b=15.611 c=4.203 251.8 grey metallic

air stable

antiferromagnetic TN=30K

DyCr2Si2C tetragonal P4/mmm a=3.999 c=5.306 Z=1 grey metallic
DyCr3Si2C hexagonal P6/mmm
DyMn2SiC orthorhombic Cmcm Z=4
Dy2Fe2Si2C monoclinic C2/m grey metallic

air stable

DyFe2SiC orthorhombic Cmcm Z=4 269 grey metallic

air stable

DyRu2SiC orthorhombic Cmcm Z=4
Ho3Si2C2 orthorhombic Cmmm a=3.828 b=15.507 c=4.189 248.7 grey metallic

air stable

metamagnetic TN=14K

HoCr2Si2C tetragonal P4/mmm a=3.996 c=5.274 Z=1 grey metallic
HoCr3Si2C hexagonal P6/mmm
HoMn2SiC orthorhombic Cmcm Z=4
HoFe2SiC orthorhombic Cmcm Z=4 267 grey metallic

air stable

HoRu2SiC orthorhombic Cmcm Z=4
Er3Si2C2 orthorhombic Cmmm a=3.811 b=15.420 c=4.172 245.2 grey metallic

air stable

metamagnetic

Er1.8C2Si8(B12)3 rhombohedral R3m a=10.0994, c=16.354, Z=3 1444.6 1.619
ErCr3Si2C hexagonal P6/mmm
ErMn2SiC orthorhombic Cmcm Z=4
ErFe2SiC orthorhombic Cmcm Z=4 265 grey metallic

air stable

ErRu2SiC orthorhombic Cmcm Z=4
Tm3Si2C2 orthorhombic Cmmm a=3.796, b=15.328, c=4.145 grey metallic

air stable

metamagnetic

TmCr3Si2C hexagonal P6/mmm
TmMn2SiC orthorhombic Cmcm Z=4
TmFe2SiC orthorhombic Cmcm Z=4 263 grey metallic

air stable

Tm2Fe2Si2C monoclinic C2/m a = 10.497, b = 3.882, c = 6.646, β = 128.96° antiferromagnetic at TN = 2.7 K

metallic

TmRu2SiC orthorhombic Cmcm Z=4
LuCr3Si2C hexagonal P6/mmm
LuMn2SiC orthorhombic Cmcm Z=4
LuFe2SiC orthorhombic Cmcm Z=4 261 grey metallic

air stable

Lu2Fe2Si2C monoclinic C2/m Pauli paramagnetic

metallic

YRe2SiC orthorhombic Cmcm Z=4 superconductor Tc ≈ 5.9 K
Y2Re2Si2C monoclinic C2/m Z=2
La2Re2Si2C monoclinic C2/m Z=2
CeRe2SiC orthorhombic Cmcm Z=4
Ce2Re2Si2C monoclinic C2/m Z=2
PrRe2SiC orthorhombic Cmcm Z=4
NdRe2SiC orthorhombic Cmcm Z=4
Nd2Re2Si2C monoclinic C2/m Z=2
SmRe2SiC orthorhombic Cmcm Z=4
Sm2Re2Si2C monoclinic C2/m Z=2
GdRe2SiC orthorhombic Cmcm Z=4
Gd2Re2Si2C monoclinic C2/m Z=2
TbRe2SiC orthorhombic Cmcm Z=4
Tb2Re2Si2C monoclinic C2/m Z=2
DyRe2SiC orthorhombic Cmcm Z=4
Dy2Re2Si2C monoclinic C2/m Z=2
HoRe2SiC orthorhombic Cmcm Z=4
Ho2Re2Si2C monoclinic C2/m Z=2
ErRe2SiC orthorhombic Cmcm Z=4
Er2Re2Si2C monoclinic C2/m Z=2
TmRe2SiC orthorhombic Cmcm Z=4
YOs2SiC orthorhombic Cmcm Z=4
LaOs2SiC orthorhombic Cmcm Z=4
CeOs2SiC orthorhombic Cmcm Z=4
PrOs2SiC orthorhombic Cmcm a=3.9602,b=11.058,c=7.172 Z=4
NdOs2SiC orthorhombic Cmcm Z=4
SmOs2SiC orthorhombic Cmcm Z=4
GdOs2SiC orthorhombic Cmcm Z=4
TbOs2SiC orthorhombic Cmcm Z=4
DyOs2SiC orthorhombic Cmcm Z=4
HoOs2SiC orthorhombic Cmcm Z=4
ErOs2SiC orthorhombic Cmcm Z=4
TmOs2SiC orthorhombic Cmcm Z=4
ThCr2Si2C tetragonal
ThMn2SiC orthorhombic Cmcm Z=4
ThFe2SiC orthorhombic Cmcm a = 3.8632, b = 10.806, c = 6.950 Z=4 290 8.79 grey metallic

air stable

Th2Fe2Si2C monoclinic C2/m Z=2
ThFe10SiC2-x tetragonal a = 10.053 and c = 6.516
ThMo2Si2C tetragonal P4/mmm a = 4.2296 c = 5.3571 Z=1 95.84 superconductor Tc=2.2K
ThRu2SiC orthorhombic Cmcm Z=4
ThRe2SiC orthorhombic Cmcm Z=4
Th2Re2Si2C monoclinic C2/m a=11.1782, b=4.1753, c=7.0293, β=128.721° Z=2
ThOs2SiC orthorhombic Cmcm Z=4
U3Si2C2 tetrahedral I4/mmm a=3.5735 c=18.882 Z=2 241.1 10.94 C-Si bond 1.93 Å

Spin glass freeze at 28K

grey metallic

air stable

U20Si16C3 hexagonal P6/mmm a= 10.377, c= 8.005, Z= 1 746.5 11.67 grey metallic

air stable

UCr2Si2C tetragonal P4/mmm a =3.983 c =5.160 Z=1 81.84 8.32
UCr3Si2C hexagonal P6/mmm
UMn2SiC orthorhombic Cmcm Z=4
UFe2SiC orthorhombic Cmcm Z=4 268 grey metallic

air stable

U2MoSi2C tetragonal P4/mbm a = 6.67 c = 4.33 
UOs2SiC orthorhombic Cmcm Z=4

References

  1. Höppe, Henning A.; Kotzyba, Gunter; Pöttgen, Rainer; Schnick, Wolfgang (2001-11-23). "High-temperature synthesis, crystal structure, optical properties, and magnetism of the carbidonitridosilicates Ho2[Si4N6C] and Tb2[Si4N6C]". Journal of Materials Chemistry. 11 (12): 3300–3306. doi:10.1039/b106533p.
  2. ^ Pöttgen, Rainer; Kaczorowski, Dariusz; Jeitschko, Wolfgang (1993). "Crystal structure, magnetic susceptibility and electrical conductivity of the uranium silicide carbides U 3 Si 2 C 2 and U 20 Si 16 C 3". J. Mater. Chem. 3 (3): 253–258. doi:10.1039/JM9930300253. ISSN 0959-9428.
  3. ^ Salvador, James R.; Bilc, Daniel; Mahanti, S. D.; Kanatzidis, Mercouri G. (2002). "Gallium Flux Synthesis of Tb3−xC2Si8(B12)3: A Novel Quaternary Boron-Rich Phase Containing B12 Icosahedra". Angewandte Chemie International Edition. 41 (5): 844–846. doi:10.1002/1521-3773(20020301)41:5<844::AID-ANIE844>3.0.CO;2-R. ISSN 1521-3773. PMID 12491355.
  4. ^ Andrievski, R A (2017-03-31). "High-melting-point compounds: new approaches and new results". Physics-Uspekhi. 60 (3): 276–289. Bibcode:2017PhyU...60..276A. doi:10.3367/UFNe.2016.09.037972. ISSN 1063-7869. S2CID 126026240.
  5. ^ Witte, Anne M.; Jeitschko, Wolfgang (October 1994). "Carbides with Filled Re3B-Type Structure". Journal of Solid State Chemistry. 112 (2): 232–236. Bibcode:1994JSSCh.112..232W. doi:10.1006/jssc.1994.1297.
  6. Ong, Chin Shen; Donzel-Gargand, Olivier; Berastegui, Pedro; Cedervall, Johan; Bayrak Pehlivan, Ilknur; Hervoches, Charles; Beran, Premysl; Edvinsson, Tomas; Eriksson, Olle; Jansson, Ulf (2024-05-27). "The Crystal Structure of Al 4 SiC 4 Revisited". Inorganic Chemistry. doi:10.1021/acs.inorgchem.4c00560. ISSN 0020-1669. PMC 11167590. PMID 38801717.
  7. Nowotny, V (1971). "Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn". Progress in Solid State Chemistry. 5: 27–70. doi:10.1016/0079-6786(71)90016-1.
  8. ^ Gerdes, Martin H.; Witte, Anne M.; Jeitschko, Wolfgang; Lang, Arne; Künnen, Bernd (July 1998). "Magnetic and Electrical Properties of a New Series of Rare Earth Silicide Carbides with the CompositionR3Si2C2(R=Y, La–Nd, Sm, Gd–Tm)". Journal of Solid State Chemistry. 138 (2): 201–206. Bibcode:1998JSSCh.138..201G. doi:10.1006/jssc.1998.7772.
  9. Button, T.W.; McColm, I.J. (February 1984). "Reaction of carbon with lanthanide silicides IV: The Y5Si3-C system". Journal of the Less Common Metals. 97: 237–244. doi:10.1016/0022-5088(84)90028-6.
  10. ^ Pohlkamp, Marc W.; Jeitschko, Wolfgang (2001-11-01). "Preparation, Properties, and Crystal Structure of Quaternary Silicide Carbides RCr 2 Si 2 C (R = Y, La - Nd, Sm, Gd - Ho)". Zeitschrift für Naturforschung B. 56 (11): 1143–1148. doi:10.1515/znb-2001-1108. ISSN 1865-7117. S2CID 197329371.
  11. ^ Lemoine, Pierric; Tobola, Janusz; Vernière, Anne; Malaman, Bernard (May 2013). "Crystal and electronic structures of the new quaternary RCr3Si2C (R=Y, Gd–Tm, Lu, U) compounds". Journal of Solid State Chemistry. 201: 293–301. Bibcode:2013JSSCh.201..293L. doi:10.1016/j.jssc.2013.03.004.
  12. ^ Hüfken, Thomas; Witte, Anne M.; Jeitschko, Wolfgang (February 1999). "Quaternary Silicide CarbidesAT2SiC (A=Rare Earth Elements and Actinoids,T=Mn, Re, Ru, Os) with DyFe2SiC-Type Structure". Journal of Solid State Chemistry. 142 (2): 279–287. Bibcode:1999JSSCh.142..279H. doi:10.1006/jssc.1998.8012.
  13. Suzuki, Yuta; Morito, Haruhiko; Yamane, Hisanori (November 2009). "Synthesis and crystal structure of Ba3Si4C2". Journal of Alloys and Compounds. 486 (1–2): 70–73. doi:10.1016/j.jallcom.2009.06.157.
  14. ^ Hüfken, Thomas; Witte, Anne M; Jeitschko, Wolfgang (February 1998). "Preparation and crystal structure of quaternary silicide carbides with Dy2Fe2Si2C type structure". Journal of Alloys and Compounds. 266 (1–2): 158–163. doi:10.1016/S0925-8388(97)00511-2.
  15. Paramanik, U.B.; Anupam; Burkhardt, U.; Prasad, R.; Geibel, C.; Hossain, Z. (December 2013). "Valence fluctuation in CeMo2Si2C". Journal of Alloys and Compounds. 580: 435–441. arXiv:1303.2801. doi:10.1016/j.jallcom.2013.05.169. S2CID 97208932.
  16. Dashjav, E.; Schnelle, W.; Wagner, F. R.; Kreiner, G.; Kniep, R. (April 2006). "Crystal structure of praseodymium dimolybdenum disilicide carbide, PrMo2Si2C". Zeitschrift für Kristallographie - New Crystal Structures. 221 (1–4): 267–268. doi:10.1524/ncrs.2006.221.14.267. ISSN 2197-4578. S2CID 95607580.
  17. Fickenscher, Thomas; Rayaprol, Sudhindra; Appen, Jörg von; Dronskowski, Richard; Pöttgen, Rainer; Łat̀ka, Kazimierz; Gurgul, Jacek (2008-02-01). "Crystal Structure, Chemical Bonding, and Magnetic Hyperfine Interactions in GdRu 2 SiC". Chemistry of Materials. 20 (4): 1381–1389. doi:10.1021/cm7020406. ISSN 0897-4756.
  18. ^ Pöttgen, R.; Ebel, T.; Evers, C.B.H.; Jeitschko, W. (January 1995). "Preparation, Structure Refinement, and Properties of Some Compounds with Dy2Fe2Si2C- and LaMn11C2-x-Type Structure". Journal of Solid State Chemistry. 114 (1): 66–72. Bibcode:1995JSSCh.114...66P. doi:10.1006/jssc.1995.1010.
  19. R De Faria, L; Ferreira, P P; Correa, L E; Eleno, L T F; Torikachvili, M S; Machado, A J S (2021-06-01). "Possible multiband superconductivity in the quaternary carbide YRe 2 SiC". Superconductor Science and Technology. 34 (6): 065010. arXiv:2105.07496. Bibcode:2021SuScT..34f5010R. doi:10.1088/1361-6668/abf7cf. ISSN 0953-2048. S2CID 234742562.
  20. Xiao, Yusen; Li, Baizhuo; Duan, Qingchen; Liu, Shaohua; Ren, Qingyong; Lin, Yiqiang; Xia, Yuanhua; Cui, YanWei; Jiang, Hao; Wei, Shuli; Ren, Zhi; Mei, Yuxue; Sun, Yuping; Fu, Shenggui; Tan, Shugang (2023-12-28). "ThCr 2 Si 2 C: An Antiferromagnetic Metal with a Cr 2 C Square Lattice". Inorganic Chemistry. 63: 211–218. doi:10.1021/acs.inorgchem.3c02988. ISSN 0020-1669. PMID 38153326.
  21. Liu, ZiChen; Li, BaiZhuo; Xiao, YuSen; Duan, QingChen; Cui, YanWei; Mei, YuXue; Tao, Qian; Wei, ShuLi; Tan, ShuGang; Jing, Qiang; Lu, Qing (July 2021). "Superconductivity in ThMo2Si2C with Mo2C square net". Science China Physics, Mechanics & Astronomy. 64 (7): 277411. arXiv:2104.09822. Bibcode:2021SCPMA..6477411L. doi:10.1007/s11433-021-1698-3. ISSN 1674-7348. S2CID 233307337.
  22. Matar, S.F.; Pöttgen, R. (October 2012). "First principles investigations of the electronic structure and chemical bonding of U3Si2C2 – A uranium silicide–carbide with the rare [SiC] unit". Chemical Physics Letters. 550: 88–93. Bibcode:2012CPL...550...88M. doi:10.1016/j.cplett.2012.09.014.
  23. Lemoine, Pierric; Vernière, Anne; Pasturel, Mathieu; Venturini, Gérard; Malaman, Bernard (2018-03-05). "Unexpected Magnetic Ordering on the Cr Substructure in UCr 2 Si 2 C and Structural Relationships in Quaternary U-Cr-Si-C Compounds". Inorganic Chemistry. 57 (5): 2546–2557. doi:10.1021/acs.inorgchem.7b02901. ISSN 0020-1669. PMID 29431434.
  24. Kovarik, Libor; Devaraj, Arun; Lavender, Curt; Joshi, Vineet (June 2019). "Crystallographic and compositional analysis of impurity phase U2MoSi2C in UMo alloys". Journal of Nuclear Materials. 519: 287–291. Bibcode:2019JNuM..519..287K. doi:10.1016/j.jnucmat.2019.03.044. S2CID 132410543.
Salts and covalent derivatives of the carbide ion
CH4
+H
He
Li4C
Li2C2
Be2C B4C
BnCm
+B
C
C2
C
CN
(CN)2
+N
CO
CO2
C3O2
CF
CF4
Ne
Na2C2 Mg2C Al4C3 SiC
+Si
+P CS2
+S
CCl4
+Cl
Ar
K2C2 CaC
CaC2
ScC
Sc3C4
Sc4C3
Sc15C19
TiC VC Cr3C2 MnC2 Fe2C
Fe3C
Fe5C2
CoC Ni2C CuC
CuC2
Zn2C Ga +Ge +As CSe2 CBr4
+Br
Kr
Rb2C2 SrC2 YC ZrC NbC MoC
Mo2C
Tc Ru2C Rh2C PdC2 Ag2C2 CdC InC Sn Sb Te CI4
+I
Xe
Cs2C2 BaC2 * LuC2 HfC TaC
TaC5
WC Re2C Os2C Ir2C PtC Au2C2 Hg2C2 TlC ?PbC Bi Po At Rn
Fr Ra ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaC2 CeC2 PrC2 NdC2 PmC2 SmC2 EuC2 GdC2 TbC2 DyC2 HoC2 ErC2 TmC2 YbC2
** Ac ThC
ThC2
PaC UC NpC PuC
Pu2C3
Am Cm Bk Cf Es Fm Md No
Categories: