Silicide carbides or carbide silicides are compounds containing anions composed of silicide (Si) and carbide (C) or clusters therof. They can be considered as mixed anion compounds or intermetallic compounds, as silicon could be considered as a semimetal.
Related compounds include the germanide carbides, phosphide silicides, boride carbides and nitride carbides. Other related compounds may contain more condensed anion combinations such as the carbidonitridosilicates with C(SiN3)4 with N bridging between two silicon atoms.
Production
Silicide carbide compounds can be made by heating silicon, graphite, and metal together. It is important to exclude oxygen before and during the reaction. The flux method involves a reaction in a molten metal. Gallium is suitable, because it dissolves carbon and silicon, but does not react with them.
Properties
Silicide carbides are a kind of ceramic, yet they also have metallic properties. They are not as brittle as most ceramics, but are stiffer than metals. They have high melting temperatures.
In air silicide carbide compounds are stable, and are hardly affected by water. The appearance is often metallic grey. When powdered the colour is dark grey.
When ErFe2SiC is dissolved in acid, mostly methane is produced, but the products include some hydrocarbons with two and three carbon atoms.
The lanthanide contraction is evident with the cell sizes for rare earth element silicide carbides.
List
formula | system | space group | unit cell Å, Z | volume | density | comment | ref |
---|---|---|---|---|---|---|---|
Al4SiC4 | hexagonal | P63mc | a = 3.2746 c = 21.7081 | 201.59 | band gap 2.2 eV | ||
Ti3SiC2 | hexagonal | P63/mmc | a = 3.064 c = 17.65 Z=2 | 143.5 | 4.53 | mp 2300°C | |
Ti5Si3Cx | |||||||
Y3Si2C2 | orthorhombic | Cmmm | a=3.845 b=15.634 c=4.213 | 253.3 | Pauli paramagnetic
grey metallic air stable |
||
Y5Si3C1.8 | |||||||
Y1.8C2Si8(B12)3 | rhombohedral | R3m | a=10.101, c=16.441, Z=3 | 1452.7 | 1.551 | ||
YCr2Si2C | tetragonal | P4/mmm | a=3.998 c=5.289 Z=1 | Pauli paramagnetic
grey metallic |
|||
YCr3Si2C | |||||||
YMn2SiC | orthorhombic | Cmcm | Z=4 | ||||
YFe2SiC | orthorhombic | Cmcm | Z=4 | 270 | grey metallic
air stable |
||
YRu2SiC | orthorhombic | Cmcm | Z=4 | ||||
Ba3Si4C2 | tetragonal | I4/mcm | a = 8.7693 c = 12.3885 | semiconductor; contains and | |||
La3Si2C2 | orthorhombic | Cmmm | a=4.039,b=16.884, and c=4.506 | 307.3 | grey metallic
air stable |
||
LaCr2Si2C | tetragonal | P4/mmm | a=4.037 c=5.347 Z=1 | ||||
La2Fe2Si2C | monoclinic | C2/m | Z=2 | ||||
Ce3Si2C2 | orthorhombic | Cmmm | a=3.990 b=16.592 c= 4.434 | 293.5 | grey metallic
air stable ?ferromagnetic (TC=10K |
||
CeCr2Si2C | tetragonal | P4/mmm | a=4.020 c=5.284 Z=1 | grey metallic | |||
Ce2Fe2Si2C | monoclinic | C2/m | Z=2 | ||||
CeMo2Si2C | |||||||
CeRu2SiC | orthorhombic | Cmcm | Z=4 | ||||
Pr3Si2C2 | orthorhombic | Cmmm | a=3.967 b=16.452 c=4.399 | 287.1 | grey metallic
air stable ferromagnetic TC=25K |
||
PrCr2Si2C | tetragonal | P4/mmm | a=4.022, c = 5.352 Z=1 | 86.58 | 6.00 | grey metallic
Si-Si pair bond 2.453 Å |
|
PrMo2Si2C | tetragonal | P4/mmm | a=4.2139 c=5.4093 Z=1 | 96.1 | metallic dark grey | ||
PrRu2SiC | orthorhombic | Cmcm | Z=4 | ||||
Nd3Si2C2 | orthorhombic | Cmmm | a=3.949 b=16.303 c=4.375 | 281.7 | grey metallic
air stable ferromagnetic TC=30K |
||
NdCr2Si2C | tetragonal | P4/mmm | a=4.026 c=5.336 Z=1 | grey metallic | |||
NdRu2SiC | orthorhombic | Cmcm | Z=4 | ||||
Sm3Si2C2 | orthorhombic | Cmmm | a=3.913 b=16.073 c=4.316 | 271.4 | grey metallic
air stable antiferromagnetic TN=19K |
||
SmCr2Si2C | tetragonal | P4/mmm | a=4.011 c=5.321 Z=1 | grey metallic | |||
SmMn2SiC | orthorhombic | Cmcm | Z=4 | ||||
SmFe2SiC | orthorhombic | Cmcm | Z=4 | 278 | grey metallic
air stable |
||
Sm2Fe2Si2C | monoclinic | C2/m | Z=2 | ||||
SmRu2SiC | orthorhombic | Cmcm | Z=4 | ||||
Gd3Si2C2 | orthorhombic | Cmmm | a=3.886 b=15.863 c=4.726 | grey metallic
air stable antiferromagnetic TN=50K |
|||
GdCr2Si2C | tetragonal | P4/mmm | a=4.007 c=5.324 Z=1 | 263.6 | grey metallic | ||
GdCr3Si2C | hexagonal | P6/mmm | |||||
GdMn2SiC | orthorhombic | Cmcm | Z=4 | ||||
GdFe2SiC | orthorhombic | Cmcm | Z=4 | 273 | grey metallic
air stable |
||
GdRu2SiC | orthorhombic | Cmcm | a = 3.830, b = 11.069, c = 7.157 Z=4 | 303.4 | 8.745 | silvery
air stable |
|
Tb3Si2C2 | orthorhombic | Cmmm | a=3.854 c=15.702 c=4.236 | 256.3 | grey metallic
air stable antiferromagnetic TN=28K |
||
Tb1.8C2Si8(B12)3 | rhombohedral | R3m | a=10.1171, c=16.397, Z=3 | 1453.4 | 1.583 | ||
TbCr2Si2C | tetragonal | P4/mmm | a=4.002 c=5.314 Z=1 | grey metallic | |||
TbCr3Si2C | hexagonal | P6/mmm | |||||
TbMn2SiC | orthorhombic | Cmcm | Z=4 | ||||
TbFe2SiC | orthorhombic | Cmcm | Z=4 | 270 | grey metallic
air stable |
||
TbRu2SiC | orthorhombic | Cmcm | Z=4 | ||||
Dy3Si2C2 | orthorhombic | Cmmm | a=3.838 b=15.611 c=4.203 | 251.8 | grey metallic
air stable antiferromagnetic TN=30K |
||
DyCr2Si2C | tetragonal | P4/mmm | a=3.999 c=5.306 Z=1 | grey metallic | |||
DyCr3Si2C | hexagonal | P6/mmm | |||||
DyMn2SiC | orthorhombic | Cmcm | Z=4 | ||||
Dy2Fe2Si2C | monoclinic | C2/m | grey metallic
air stable |
||||
DyFe2SiC | orthorhombic | Cmcm | Z=4 | 269 | grey metallic
air stable |
||
DyRu2SiC | orthorhombic | Cmcm | Z=4 | ||||
Ho3Si2C2 | orthorhombic | Cmmm | a=3.828 b=15.507 c=4.189 | 248.7 | grey metallic
air stable metamagnetic TN=14K |
||
HoCr2Si2C | tetragonal | P4/mmm | a=3.996 c=5.274 Z=1 | grey metallic | |||
HoCr3Si2C | hexagonal | P6/mmm | |||||
HoMn2SiC | orthorhombic | Cmcm | Z=4 | ||||
HoFe2SiC | orthorhombic | Cmcm | Z=4 | 267 | grey metallic
air stable |
||
HoRu2SiC | orthorhombic | Cmcm | Z=4 | ||||
Er3Si2C2 | orthorhombic | Cmmm | a=3.811 b=15.420 c=4.172 | 245.2 | grey metallic
air stable metamagnetic |
||
Er1.8C2Si8(B12)3 | rhombohedral | R3m | a=10.0994, c=16.354, Z=3 | 1444.6 | 1.619 | ||
ErCr3Si2C | hexagonal | P6/mmm | |||||
ErMn2SiC | orthorhombic | Cmcm | Z=4 | ||||
ErFe2SiC | orthorhombic | Cmcm | Z=4 | 265 | grey metallic
air stable |
||
ErRu2SiC | orthorhombic | Cmcm | Z=4 | ||||
Tm3Si2C2 | orthorhombic | Cmmm | a=3.796, b=15.328, c=4.145 | grey metallic
air stable metamagnetic |
|||
TmCr3Si2C | hexagonal | P6/mmm | |||||
TmMn2SiC | orthorhombic | Cmcm | Z=4 | ||||
TmFe2SiC | orthorhombic | Cmcm | Z=4 | 263 | grey metallic
air stable |
||
Tm2Fe2Si2C | monoclinic | C2/m | a = 10.497, b = 3.882, c = 6.646, β = 128.96° | antiferromagnetic at TN = 2.7 K
metallic |
|||
TmRu2SiC | orthorhombic | Cmcm | Z=4 | ||||
LuCr3Si2C | hexagonal | P6/mmm | |||||
LuMn2SiC | orthorhombic | Cmcm | Z=4 | ||||
LuFe2SiC | orthorhombic | Cmcm | Z=4 | 261 | grey metallic
air stable |
||
Lu2Fe2Si2C | monoclinic | C2/m | Pauli paramagnetic
metallic |
||||
YRe2SiC | orthorhombic | Cmcm | Z=4 | superconductor Tc ≈ 5.9 K | |||
Y2Re2Si2C | monoclinic | C2/m | Z=2 | ||||
La2Re2Si2C | monoclinic | C2/m | Z=2 | ||||
CeRe2SiC | orthorhombic | Cmcm | Z=4 | ||||
Ce2Re2Si2C | monoclinic | C2/m | Z=2 | ||||
PrRe2SiC | orthorhombic | Cmcm | Z=4 | ||||
NdRe2SiC | orthorhombic | Cmcm | Z=4 | ||||
Nd2Re2Si2C | monoclinic | C2/m | Z=2 | ||||
SmRe2SiC | orthorhombic | Cmcm | Z=4 | ||||
Sm2Re2Si2C | monoclinic | C2/m | Z=2 | ||||
GdRe2SiC | orthorhombic | Cmcm | Z=4 | ||||
Gd2Re2Si2C | monoclinic | C2/m | Z=2 | ||||
TbRe2SiC | orthorhombic | Cmcm | Z=4 | ||||
Tb2Re2Si2C | monoclinic | C2/m | Z=2 | ||||
DyRe2SiC | orthorhombic | Cmcm | Z=4 | ||||
Dy2Re2Si2C | monoclinic | C2/m | Z=2 | ||||
HoRe2SiC | orthorhombic | Cmcm | Z=4 | ||||
Ho2Re2Si2C | monoclinic | C2/m | Z=2 | ||||
ErRe2SiC | orthorhombic | Cmcm | Z=4 | ||||
Er2Re2Si2C | monoclinic | C2/m | Z=2 | ||||
TmRe2SiC | orthorhombic | Cmcm | Z=4 | ||||
YOs2SiC | orthorhombic | Cmcm | Z=4 | ||||
LaOs2SiC | orthorhombic | Cmcm | Z=4 | ||||
CeOs2SiC | orthorhombic | Cmcm | Z=4 | ||||
PrOs2SiC | orthorhombic | Cmcm | a=3.9602,b=11.058,c=7.172 Z=4 | ||||
NdOs2SiC | orthorhombic | Cmcm | Z=4 | ||||
SmOs2SiC | orthorhombic | Cmcm | Z=4 | ||||
GdOs2SiC | orthorhombic | Cmcm | Z=4 | ||||
TbOs2SiC | orthorhombic | Cmcm | Z=4 | ||||
DyOs2SiC | orthorhombic | Cmcm | Z=4 | ||||
HoOs2SiC | orthorhombic | Cmcm | Z=4 | ||||
ErOs2SiC | orthorhombic | Cmcm | Z=4 | ||||
TmOs2SiC | orthorhombic | Cmcm | Z=4 | ||||
ThCr2Si2C | tetragonal | ||||||
ThMn2SiC | orthorhombic | Cmcm | Z=4 | ||||
ThFe2SiC | orthorhombic | Cmcm | a = 3.8632, b = 10.806, c = 6.950 Z=4 | 290 | 8.79 | grey metallic
air stable |
|
Th2Fe2Si2C | monoclinic | C2/m | Z=2 | ||||
ThFe10SiC2-x | tetragonal | a = 10.053 and c = 6.516 | |||||
ThMo2Si2C | tetragonal | P4/mmm | a = 4.2296 c = 5.3571 Z=1 | 95.84 | superconductor Tc=2.2K | ||
ThRu2SiC | orthorhombic | Cmcm | Z=4 | ||||
ThRe2SiC | orthorhombic | Cmcm | Z=4 | ||||
Th2Re2Si2C | monoclinic | C2/m | a=11.1782, b=4.1753, c=7.0293, β=128.721° Z=2 | ||||
ThOs2SiC | orthorhombic | Cmcm | Z=4 | ||||
U3Si2C2 | tetrahedral | I4/mmm | a=3.5735 c=18.882 Z=2 | 241.1 | 10.94 | C-Si bond 1.93 Å
Spin glass freeze at 28K grey metallic air stable |
|
U20Si16C3 | hexagonal | P6/mmm | a= 10.377, c= 8.005, Z= 1 | 746.5 | 11.67 | grey metallic
air stable |
|
UCr2Si2C | tetragonal | P4/mmm | a =3.983 c =5.160 Z=1 | 81.84 | 8.32 | ||
UCr3Si2C | hexagonal | P6/mmm | |||||
UMn2SiC | orthorhombic | Cmcm | Z=4 | ||||
UFe2SiC | orthorhombic | Cmcm | Z=4 | 268 | grey metallic
air stable |
||
U2MoSi2C | tetragonal | P4/mbm | a = 6.67 c = 4.33 | ||||
UOs2SiC | orthorhombic | Cmcm | Z=4 |
References
- Höppe, Henning A.; Kotzyba, Gunter; Pöttgen, Rainer; Schnick, Wolfgang (2001-11-23). "High-temperature synthesis, crystal structure, optical properties, and magnetism of the carbidonitridosilicates Ho2[Si4N6C] and Tb2[Si4N6C]". Journal of Materials Chemistry. 11 (12): 3300–3306. doi:10.1039/b106533p.
- ^ Pöttgen, Rainer; Kaczorowski, Dariusz; Jeitschko, Wolfgang (1993). "Crystal structure, magnetic susceptibility and electrical conductivity of the uranium silicide carbides U 3 Si 2 C 2 and U 20 Si 16 C 3". J. Mater. Chem. 3 (3): 253–258. doi:10.1039/JM9930300253. ISSN 0959-9428.
- ^ Salvador, James R.; Bilc, Daniel; Mahanti, S. D.; Kanatzidis, Mercouri G. (2002). "Gallium Flux Synthesis of Tb3−xC2Si8(B12)3: A Novel Quaternary Boron-Rich Phase Containing B12 Icosahedra". Angewandte Chemie International Edition. 41 (5): 844–846. doi:10.1002/1521-3773(20020301)41:5<844::AID-ANIE844>3.0.CO;2-R. ISSN 1521-3773. PMID 12491355.
- ^ Andrievski, R A (2017-03-31). "High-melting-point compounds: new approaches and new results". Physics-Uspekhi. 60 (3): 276–289. Bibcode:2017PhyU...60..276A. doi:10.3367/UFNe.2016.09.037972. ISSN 1063-7869. S2CID 126026240.
- ^ Witte, Anne M.; Jeitschko, Wolfgang (October 1994). "Carbides with Filled Re3B-Type Structure". Journal of Solid State Chemistry. 112 (2): 232–236. Bibcode:1994JSSCh.112..232W. doi:10.1006/jssc.1994.1297.
- Ong, Chin Shen; Donzel-Gargand, Olivier; Berastegui, Pedro; Cedervall, Johan; Bayrak Pehlivan, Ilknur; Hervoches, Charles; Beran, Premysl; Edvinsson, Tomas; Eriksson, Olle; Jansson, Ulf (2024-05-27). "The Crystal Structure of Al 4 SiC 4 Revisited". Inorganic Chemistry. doi:10.1021/acs.inorgchem.4c00560. ISSN 0020-1669. PMC 11167590. PMID 38801717.
- Nowotny, V (1971). "Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn". Progress in Solid State Chemistry. 5: 27–70. doi:10.1016/0079-6786(71)90016-1.
- ^ Gerdes, Martin H.; Witte, Anne M.; Jeitschko, Wolfgang; Lang, Arne; Künnen, Bernd (July 1998). "Magnetic and Electrical Properties of a New Series of Rare Earth Silicide Carbides with the CompositionR3Si2C2(R=Y, La–Nd, Sm, Gd–Tm)". Journal of Solid State Chemistry. 138 (2): 201–206. Bibcode:1998JSSCh.138..201G. doi:10.1006/jssc.1998.7772.
- Button, T.W.; McColm, I.J. (February 1984). "Reaction of carbon with lanthanide silicides IV: The Y5Si3-C system". Journal of the Less Common Metals. 97: 237–244. doi:10.1016/0022-5088(84)90028-6.
- ^ Pohlkamp, Marc W.; Jeitschko, Wolfgang (2001-11-01). "Preparation, Properties, and Crystal Structure of Quaternary Silicide Carbides RCr 2 Si 2 C (R = Y, La - Nd, Sm, Gd - Ho)". Zeitschrift für Naturforschung B. 56 (11): 1143–1148. doi:10.1515/znb-2001-1108. ISSN 1865-7117. S2CID 197329371.
- ^ Lemoine, Pierric; Tobola, Janusz; Vernière, Anne; Malaman, Bernard (May 2013). "Crystal and electronic structures of the new quaternary RCr3Si2C (R=Y, Gd–Tm, Lu, U) compounds". Journal of Solid State Chemistry. 201: 293–301. Bibcode:2013JSSCh.201..293L. doi:10.1016/j.jssc.2013.03.004.
- ^ Hüfken, Thomas; Witte, Anne M.; Jeitschko, Wolfgang (February 1999). "Quaternary Silicide CarbidesAT2SiC (A=Rare Earth Elements and Actinoids,T=Mn, Re, Ru, Os) with DyFe2SiC-Type Structure". Journal of Solid State Chemistry. 142 (2): 279–287. Bibcode:1999JSSCh.142..279H. doi:10.1006/jssc.1998.8012.
- Suzuki, Yuta; Morito, Haruhiko; Yamane, Hisanori (November 2009). "Synthesis and crystal structure of Ba3Si4C2". Journal of Alloys and Compounds. 486 (1–2): 70–73. doi:10.1016/j.jallcom.2009.06.157.
- ^ Hüfken, Thomas; Witte, Anne M; Jeitschko, Wolfgang (February 1998). "Preparation and crystal structure of quaternary silicide carbides with Dy2Fe2Si2C type structure". Journal of Alloys and Compounds. 266 (1–2): 158–163. doi:10.1016/S0925-8388(97)00511-2.
- Paramanik, U.B.; Anupam; Burkhardt, U.; Prasad, R.; Geibel, C.; Hossain, Z. (December 2013). "Valence fluctuation in CeMo2Si2C". Journal of Alloys and Compounds. 580: 435–441. arXiv:1303.2801. doi:10.1016/j.jallcom.2013.05.169. S2CID 97208932.
- Dashjav, E.; Schnelle, W.; Wagner, F. R.; Kreiner, G.; Kniep, R. (April 2006). "Crystal structure of praseodymium dimolybdenum disilicide carbide, PrMo2Si2C". Zeitschrift für Kristallographie - New Crystal Structures. 221 (1–4): 267–268. doi:10.1524/ncrs.2006.221.14.267. ISSN 2197-4578. S2CID 95607580.
- Fickenscher, Thomas; Rayaprol, Sudhindra; Appen, Jörg von; Dronskowski, Richard; Pöttgen, Rainer; Łat̀ka, Kazimierz; Gurgul, Jacek (2008-02-01). "Crystal Structure, Chemical Bonding, and Magnetic Hyperfine Interactions in GdRu 2 SiC". Chemistry of Materials. 20 (4): 1381–1389. doi:10.1021/cm7020406. ISSN 0897-4756.
- ^ Pöttgen, R.; Ebel, T.; Evers, C.B.H.; Jeitschko, W. (January 1995). "Preparation, Structure Refinement, and Properties of Some Compounds with Dy2Fe2Si2C- and LaMn11C2-x-Type Structure". Journal of Solid State Chemistry. 114 (1): 66–72. Bibcode:1995JSSCh.114...66P. doi:10.1006/jssc.1995.1010.
- R De Faria, L; Ferreira, P P; Correa, L E; Eleno, L T F; Torikachvili, M S; Machado, A J S (2021-06-01). "Possible multiband superconductivity in the quaternary carbide YRe 2 SiC". Superconductor Science and Technology. 34 (6): 065010. arXiv:2105.07496. Bibcode:2021SuScT..34f5010R. doi:10.1088/1361-6668/abf7cf. ISSN 0953-2048. S2CID 234742562.
- Xiao, Yusen; Li, Baizhuo; Duan, Qingchen; Liu, Shaohua; Ren, Qingyong; Lin, Yiqiang; Xia, Yuanhua; Cui, YanWei; Jiang, Hao; Wei, Shuli; Ren, Zhi; Mei, Yuxue; Sun, Yuping; Fu, Shenggui; Tan, Shugang (2023-12-28). "ThCr 2 Si 2 C: An Antiferromagnetic Metal with a Cr 2 C Square Lattice". Inorganic Chemistry. 63: 211–218. doi:10.1021/acs.inorgchem.3c02988. ISSN 0020-1669. PMID 38153326.
- Liu, ZiChen; Li, BaiZhuo; Xiao, YuSen; Duan, QingChen; Cui, YanWei; Mei, YuXue; Tao, Qian; Wei, ShuLi; Tan, ShuGang; Jing, Qiang; Lu, Qing (July 2021). "Superconductivity in ThMo2Si2C with Mo2C square net". Science China Physics, Mechanics & Astronomy. 64 (7): 277411. arXiv:2104.09822. Bibcode:2021SCPMA..6477411L. doi:10.1007/s11433-021-1698-3. ISSN 1674-7348. S2CID 233307337.
- Matar, S.F.; Pöttgen, R. (October 2012). "First principles investigations of the electronic structure and chemical bonding of U3Si2C2 – A uranium silicide–carbide with the rare [SiC] unit". Chemical Physics Letters. 550: 88–93. Bibcode:2012CPL...550...88M. doi:10.1016/j.cplett.2012.09.014.
- Lemoine, Pierric; Vernière, Anne; Pasturel, Mathieu; Venturini, Gérard; Malaman, Bernard (2018-03-05). "Unexpected Magnetic Ordering on the Cr Substructure in UCr 2 Si 2 C and Structural Relationships in Quaternary U-Cr-Si-C Compounds". Inorganic Chemistry. 57 (5): 2546–2557. doi:10.1021/acs.inorgchem.7b02901. ISSN 0020-1669. PMID 29431434.
- Kovarik, Libor; Devaraj, Arun; Lavender, Curt; Joshi, Vineet (June 2019). "Crystallographic and compositional analysis of impurity phase U2MoSi2C in UMo alloys". Journal of Nuclear Materials. 519: 287–291. Bibcode:2019JNuM..519..287K. doi:10.1016/j.jnucmat.2019.03.044. S2CID 132410543.
Salts and covalent derivatives of the carbide ion | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|