Misplaced Pages

Tetraoctagonal tiling

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Tetraoctagonal tiling
Tetraoctagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration (4.8)
Schläfli symbol r{8,4} or { 8 4 } {\displaystyle {\begin{Bmatrix}8\\4\end{Bmatrix}}}
rr{8,8}
rr(4,4,4)
t0,1,2,3(∞,4,∞,4)
Wythoff symbol 2 | 8 4
Coxeter diagram or
or

Symmetry group , (*842)
, (*882)
, (*444)
, (*4242)
Dual Order-8-4 quasiregular rhombic tiling
Properties Vertex-transitive edge-transitive

In geometry, the tetraoctagonal tiling is a uniform tiling of the hyperbolic plane.

Constructions

There are for uniform constructions of this tiling, three of them as constructed by mirror removal from the or (*842) orbifold symmetry. Removing the mirror between the order 2 and 4 points, , gives , (*882). Removing the mirror between the order 2 and 8 points, , gives , (*444). Removing both mirrors, , leaves a rectangular fundamental domain, , (*4242).

Four uniform constructions of 4.8.4.8
Name Tetra-octagonal tiling Rhombi-octaoctagonal tiling
Image
Symmetry
(*842)
=
(*882)
=
=
(*444)
=
=
(*4242)
= or
Schläfli r{8,4} rr{8,8}
=r{8,4}/2
r(4,4,4)
=r{4,8}/2
t0,1,2,3(∞,4,∞,4)
=r{8,4}/4
Coxeter = = = or

Symmetry

The dual tiling has face configuration V4.8.4.8, and represents the fundamental domains of a quadrilateral kaleidoscope, orbifold (*4242), shown here. Adding a 2-fold gyration point at the center of each rhombi defines a (2*42) orbifold.

Related polyhedra and tiling

*n42 symmetry mutations of quasiregular tilings: (4.n)
Symmetry
*4n2
Spherical Euclidean Compact hyperbolic Paracompact Noncompact
*342
*442
*542
*642
*742
*842
...
*∞42
 
Figures
Config. (4.3) (4.4) (4.5) (4.6) (4.7) (4.8) (4.∞) (4.ni)
Dimensional family of quasiregular polyhedra and tilings: (8.n)
Symmetry
*8n2
Hyperbolic... Paracompact Noncompact
*832
*842
*852
*862
*872
*882
...
*∞82
 
Coxeter
Quasiregular
figures
configuration

3.8.3.8

4.8.4.8

8.5.8.5

8.6.8.6

8.7.8.7

8.8.8.8

8.∞.8.∞
 
8.∞.8.∞
Uniform octagonal/square tilings
, (*842)
(with (*882), (*444) , (*4222) index 2 subsymmetries)
(And (*4242) index 4 subsymmetry)

=

=
=

=

=
=

=


=


=
=



=
{8,4} t{8,4}
r{8,4} 2t{8,4}=t{4,8} 2r{8,4}={4,8} rr{8,4} tr{8,4}
Uniform duals
V8 V4.16.16 V(4.8) V8.8.8 V4 V4.4.4.8 V4.8.16
Alternations

(*444)

(8*2)

(*4222)

(4*4)

(*882)

(2*42)

(842)

=

=

=

=

=

=
h{8,4} s{8,4} hr{8,4} s{4,8} h{4,8} hrr{8,4} sr{8,4}
Alternation duals
V(4.4) V3.(3.8) V(4.4.4) V(3.4) V8 V4.4 V3.3.4.3.8
Uniform octaoctagonal tilings
Symmetry: , (*882)
=
=
=
=
=
=
=
=
=
=
=
=
=
=
{8,8} t{8,8}
r{8,8} 2t{8,8}=t{8,8} 2r{8,8}={8,8} rr{8,8} tr{8,8}
Uniform duals
V8 V8.16.16 V8.8.8.8 V8.16.16 V8 V4.8.4.8 V4.16.16
Alternations

(*884)

(8*4)

(*4242)

(8*4)

(*884)

(2*44)

(882)
= = = =
=
=
=
h{8,8} s{8,8} hr{8,8} s{8,8} h{8,8} hrr{8,8} sr{8,8}
Alternation duals
V(4.8) V3.4.3.8.3.8 V(4.4) V3.4.3.8.3.8 V(4.8) V4 V3.3.8.3.8
Uniform (4,4,4) tilings
Symmetry: , (*444)
(444)

(*4242)

(4*22)










t0(4,4,4)
h{8,4}
t0,1(4,4,4)
h2{8,4}
t1(4,4,4)
{4,8}/2
t1,2(4,4,4)
h2{8,4}
t2(4,4,4)
h{8,4}
t0,2(4,4,4)
r{4,8}/2
t0,1,2(4,4,4)
t{4,8}/2
s(4,4,4)
s{4,8}/2
h(4,4,4)
h{4,8}/2
hr(4,4,4)
hr{4,8}/2
Uniform duals
V(4.4) V4.8.4.8 V(4.4) V4.8.4.8 V(4.4) V4.8.4.8 V8.8.8 V3.4.3.4.3.4 V8 V(4,4)

See also

References

External links

Categories: