Tetraoctagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | (4.8) |
Schläfli symbol | r{8,4} or rr{8,8} rr(4,4,4) t0,1,2,3(∞,4,∞,4) |
Wythoff symbol | 2 | 8 4 |
Coxeter diagram | or or |
Symmetry group | , (*842) , (*882) , (*444) , (*4242) |
Dual | Order-8-4 quasiregular rhombic tiling |
Properties | Vertex-transitive edge-transitive |
In geometry, the tetraoctagonal tiling is a uniform tiling of the hyperbolic plane.
Constructions
There are for uniform constructions of this tiling, three of them as constructed by mirror removal from the or (*842) orbifold symmetry. Removing the mirror between the order 2 and 4 points, , gives , (*882). Removing the mirror between the order 2 and 8 points, , gives , (*444). Removing both mirrors, , leaves a rectangular fundamental domain, , (*4242).
Name | Tetra-octagonal tiling | Rhombi-octaoctagonal tiling | ||
---|---|---|---|---|
Image | ||||
Symmetry | (*842) |
= (*882) = |
= (*444) = |
= (*4242) = or |
Schläfli | r{8,4} | rr{8,8} =r{8,4}/2 |
r(4,4,4) =r{4,8}/2 |
t0,1,2,3(∞,4,∞,4) =r{8,4}/4 |
Coxeter | = | = | = or |
Symmetry
The dual tiling has face configuration V4.8.4.8, and represents the fundamental domains of a quadrilateral kaleidoscope, orbifold (*4242), shown here. Adding a 2-fold gyration point at the center of each rhombi defines a (2*42) orbifold.
Related polyhedra and tiling
*n42 symmetry mutations of quasiregular tilings: (4.n) | ||||||||
---|---|---|---|---|---|---|---|---|
Symmetry *4n2 |
Spherical | Euclidean | Compact hyperbolic | Paracompact | Noncompact | |||
*342 |
*442 |
*542 |
*642 |
*742 |
*842 ... |
*∞42 |
| |
Figures | ||||||||
Config. | (4.3) | (4.4) | (4.5) | (4.6) | (4.7) | (4.8) | (4.∞) | (4.ni) |
Dimensional family of quasiregular polyhedra and tilings: (8.n) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry *8n2 |
Hyperbolic... | Paracompact | Noncompact | ||||||||
*832 |
*842 |
*852 |
*862 |
*872 |
*882 ... |
*∞82 |
| ||||
Coxeter | |||||||||||
Quasiregular figures configuration |
3.8.3.8 |
4.8.4.8 |
8.5.8.5 |
8.6.8.6 |
8.7.8.7 |
8.8.8.8 |
8.∞.8.∞ |
8.∞.8.∞ |
Uniform octagonal/square tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
, (*842) (with (*882), (*444) , (*4222) index 2 subsymmetries) (And (*4242) index 4 subsymmetry) | |||||||||||
= = = |
= |
= = = |
= |
= = |
= |
||||||
{8,4} | t{8,4} |
r{8,4} | 2t{8,4}=t{4,8} | 2r{8,4}={4,8} | rr{8,4} | tr{8,4} | |||||
Uniform duals | |||||||||||
V8 | V4.16.16 | V(4.8) | V8.8.8 | V4 | V4.4.4.8 | V4.8.16 | |||||
Alternations | |||||||||||
(*444) |
(8*2) |
(*4222) |
(4*4) |
(*882) |
(2*42) |
(842) | |||||
= |
= |
= |
= |
= |
= |
||||||
h{8,4} | s{8,4} | hr{8,4} | s{4,8} | h{4,8} | hrr{8,4} | sr{8,4} | |||||
Alternation duals | |||||||||||
V(4.4) | V3.(3.8) | V(4.4.4) | V(3.4) | V8 | V4.4 | V3.3.4.3.8 |
Uniform octaoctagonal tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: , (*882) | |||||||||||
= = |
= = |
= = |
= = |
= = |
= = |
= = | |||||
{8,8} | t{8,8} |
r{8,8} | 2t{8,8}=t{8,8} | 2r{8,8}={8,8} | rr{8,8} | tr{8,8} | |||||
Uniform duals | |||||||||||
V8 | V8.16.16 | V8.8.8.8 | V8.16.16 | V8 | V4.8.4.8 | V4.16.16 | |||||
Alternations | |||||||||||
(*884) |
(8*4) |
(*4242) |
(8*4) |
(*884) |
(2*44) |
(882) | |||||
= | = | = | = = |
= = | |||||||
h{8,8} | s{8,8} | hr{8,8} | s{8,8} | h{8,8} | hrr{8,8} | sr{8,8} | |||||
Alternation duals | |||||||||||
V(4.8) | V3.4.3.8.3.8 | V(4.4) | V3.4.3.8.3.8 | V(4.8) | V4 | V3.3.8.3.8 |
Uniform (4,4,4) tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: , (*444) | (444) |
(*4242) |
(4*22) | ||||||||
t0(4,4,4) h{8,4} |
t0,1(4,4,4) h2{8,4} |
t1(4,4,4) {4,8}/2 |
t1,2(4,4,4) h2{8,4} |
t2(4,4,4) h{8,4} |
t0,2(4,4,4) r{4,8}/2 |
t0,1,2(4,4,4) t{4,8}/2 |
s(4,4,4) s{4,8}/2 |
h(4,4,4) h{4,8}/2 |
hr(4,4,4) hr{4,8}/2 | ||
Uniform duals | |||||||||||
V(4.4) | V4.8.4.8 | V(4.4) | V4.8.4.8 | V(4.4) | V4.8.4.8 | V8.8.8 | V3.4.3.4.3.4 | V8 | V(4,4) |
See also
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
- Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
- Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch