Misplaced Pages

Snub tetraoctagonal tiling

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Snub tetraoctagonal tiling
Snub tetraoctagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.4.3.8
Schläfli symbol sr{8,4} or s { 8 4 } {\displaystyle s{\begin{Bmatrix}8\\4\end{Bmatrix}}}
Wythoff symbol | 8 4 2
Coxeter diagram
Symmetry group , (842)
Dual Order-8-4 floret pentagonal tiling
Properties Vertex-transitive Chiral

In geometry, the snub tetraoctagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{8,4}.

Images

Drawn in chiral pairs, with edges missing between black triangles:

Related polyhedra and tiling

The snub tetraoctagonal tiling is seventh in a series of snub polyhedra and tilings with vertex figure 3.3.4.3.n.

4n2 symmetry mutations of snub tilings: 3.3.4.3.n
Symmetry
4n2
Spherical Euclidean Compact hyperbolic Paracomp.
242 342 442 542 642 742 842 ∞42
Snub
figures
Config. 3.3.4.3.2 3.3.4.3.3 3.3.4.3.4 3.3.4.3.5 3.3.4.3.6 3.3.4.3.7 3.3.4.3.8 3.3.4.3.∞
Gyro
figures
Config. V3.3.4.3.2 V3.3.4.3.3 V3.3.4.3.4 V3.3.4.3.5 V3.3.4.3.6 V3.3.4.3.7 V3.3.4.3.8 V3.3.4.3.∞
Uniform octagonal/square tilings
, (*842)
(with (*882), (*444) , (*4222) index 2 subsymmetries)
(And (*4242) index 4 subsymmetry)

=

=
=

=

=
=

=


=


=
=



=
{8,4} t{8,4}
r{8,4} 2t{8,4}=t{4,8} 2r{8,4}={4,8} rr{8,4} tr{8,4}
Uniform duals
V8 V4.16.16 V(4.8) V8.8.8 V4 V4.4.4.8 V4.8.16
Alternations

(*444)

(8*2)

(*4222)

(4*4)

(*882)

(2*42)

(842)

=

=

=

=

=

=
h{8,4} s{8,4} hr{8,4} s{4,8} h{4,8} hrr{8,4} sr{8,4}
Alternation duals
V(4.4) V3.(3.8) V(4.4.4) V(3.4) V8 V4.4 V3.3.4.3.8

References

See also

External links

Tessellation
Periodic


Aperiodic
Other
By vertex type
Spherical
Regular
Semi-
regular
Hyper-
bolic
Categories: