Misplaced Pages

Order-4 apeirogonal tiling

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Regular tiling in geometry
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (July 2013) (Learn how and when to remove this message)
Order-4 apeirogonal tiling
Order-4 apeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration
Schläfli symbol {∞,4}
r{∞,∞}
t(∞,∞,∞)
t0,1,2,3(∞,∞,∞,∞)
Wythoff symbol 4 | ∞ 2
2 | ∞ ∞
∞ ∞ | ∞
Coxeter diagram

Symmetry group , (*∞42)
, (*∞∞2)
, (*∞∞∞)
(*∞∞∞∞)
Dual Infinite-order square tiling
Properties Vertex-transitive, edge-transitive, face-transitive edge-transitive

In geometry, the order-4 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,4}.

Symmetry

This tiling represents the mirror lines of *2 symmetry. Its dual tiling represents the fundamental domains of orbifold notation *∞∞∞∞ symmetry, a square domain with four ideal vertices.

Uniform colorings

Like the Euclidean square tiling there are 9 uniform colorings for this tiling, with 3 uniform colorings generated by triangle reflective domains. A fourth can be constructed from an infinite square symmetry (*∞∞∞∞) with 4 colors around a vertex. The checker board, r{∞,∞}, coloring defines the fundamental domains of , (*∞44) symmetry, usually shown as black and white domains of reflective orientations.

1 color 2 color 3 and 2 colors 4, 3 and 2 colors
, (*∞42) , (*∞∞2) , (*∞∞∞) (*∞∞∞∞)
{∞,4} r{∞,∞}
= {∞,4}1⁄2
t0,2(∞,∞,∞)
= r{∞,∞}1⁄2
t0,1,2,3(∞,∞,∞,∞)
= r{∞,∞}1⁄4 = {∞,4}1⁄8

(1111)

(1212)

(1213)

(1112)

(1234)

(1123)

(1122)
= =
=
= =

Related polyhedra and tiling

This tiling is also topologically related as a part of sequence of regular polyhedra and tilings with four faces per vertex, starting with the octahedron, with Schläfli symbol {n,4}, and Coxeter diagram , with n progressing to infinity.

*n42 symmetry mutation of regular tilings: {n,4}
Spherical Euclidean Hyperbolic tilings
2 3 4 5 6 7 8 ...
Paracompact uniform tilings in family
{∞,4} t{∞,4} r{∞,4} 2t{∞,4}=t{4,∞} 2r{∞,4}={4,∞} rr{∞,4} tr{∞,4}
Dual figures
V∞ V4.∞.∞ V(4.∞) V8.8.∞ V4 V4.∞ V4.8.∞
Alternations

(*44∞)

(∞*2)

(*2∞2∞)

(4*∞)

(*∞∞2)

(2*2∞)

(∞42)

=

=
h{∞,4} s{∞,4} hr{∞,4} s{4,∞} h{4,∞} hrr{∞,4} s{∞,4}
Alternation duals
V(∞.4) V3.(3.∞) V(4.∞.4) V3.∞.(3.4) V∞ V∞.4 V3.3.4.3.∞
Paracompact uniform tilings in family

=
=

=
=

=
=

=
=

=
=

=

=
{∞,∞} t{∞,∞} r{∞,∞} 2t{∞,∞}=t{∞,∞} 2r{∞,∞}={∞,∞} rr{∞,∞} tr{∞,∞}
Dual tilings
V∞ V∞.∞.∞ V(∞.∞) V∞.∞.∞ V∞ V4.∞.4.∞ V4.4.∞
Alternations

(*∞∞2)

(∞*∞)

(*∞∞∞∞)

(∞*∞)

(*∞∞2)

(2*∞∞)

(2∞∞)
h{∞,∞} s{∞,∞} hr{∞,∞} s{∞,∞} h2{∞,∞} hrr{∞,∞} sr{∞,∞}
Alternation duals
V(∞.∞) V(3.∞) V(∞.4) V(3.∞) V∞ V(4.∞.4) V3.3.∞.3.∞
Paracompact uniform tilings in family
(∞,∞,∞)
h{∞,∞}
r(∞,∞,∞)
h2{∞,∞}
(∞,∞,∞)
h{∞,∞}
r(∞,∞,∞)
h2{∞,∞}
(∞,∞,∞)
h{∞,∞}
r(∞,∞,∞)
r{∞,∞}
t(∞,∞,∞)
t{∞,∞}
Dual tilings
V∞ V∞.∞.∞.∞ V∞ V∞.∞.∞.∞ V∞ V∞.∞.∞.∞ V∞.∞.∞
Alternations

(*∞∞∞∞)

(∞*∞)

(*∞∞∞∞)

(∞*∞)

(*∞∞∞∞)

(∞*∞)

(∞∞∞)
Alternation duals
V(∞.∞) V(∞.4) V(∞.∞) V(∞.4) V(∞.∞) V(∞.4) V3.∞.3.∞.3.∞

See also

References

External links

Tessellation
Periodic


Aperiodic
Other
By vertex type
Spherical
Regular
Semi-
regular
Hyper-
bolic
Categories: