Rhombitetraheptagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 4.4.7.4 |
Schläfli symbol | rr{7,4} or |
Wythoff symbol | 4 | 7 2 |
Coxeter diagram | |
Symmetry group | , (*742) |
Dual | Deltoidal tetraheptagonal tiling |
Properties | Vertex-transitive |
In geometry, the rhombitetraheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{4,7}. It can be seen as constructed as a rectified tetraheptagonal tiling, r{7,4}, as well as an expanded order-4 heptagonal tiling or expanded order-7 square tiling.
Dual tiling
The dual is called the deltoidal tetraheptagonal tiling with face configuration V.4.4.4.7.
Related polyhedra and tiling
*n42 symmetry mutation of expanded tilings: n.4.4.4 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry , (*n42) |
Spherical | Euclidean | Compact hyperbolic | Paracomp. | |||||||
*342 |
*442 |
*542 |
*642 |
*742 |
*842 |
*∞42 | |||||
Expanded figures |
|||||||||||
Config. | 3.4.4.4 | 4.4.4.4 | 5.4.4.4 | 6.4.4.4 | 7.4.4.4 | 8.4.4.4 | ∞.4.4.4 | ||||
Rhombic figures config. |
V3.4.4.4 |
V4.4.4.4 |
V5.4.4.4 |
V6.4.4.4 |
V7.4.4.4 |
V8.4.4.4 |
V∞.4.4.4 |
Uniform heptagonal/square tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: , (*742) | , (742) | , (7*2) | , (*772) | ||||||||
{7,4} | t{7,4} | r{7,4} | 2t{7,4}=t{4,7} | 2r{7,4}={4,7} | rr{7,4} | tr{7,4} | sr{7,4} | s{7,4} | h{4,7} | ||
Uniform duals | |||||||||||
V7 | V4.14.14 | V4.7.4.7 | V7.8.8 | V4 | V4.4.7.4 | V4.8.14 | V3.3.4.3.7 | V3.3.7.3.7 | V7 |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
External links
- Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
- Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
Tessellation | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||
| |||||||||||||
| |||||||||||||
|
This hyperbolic geometry-related article is a stub. You can help Misplaced Pages by expanding it. |