Misplaced Pages

Truncated order-5 square tiling

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Truncated order-5 square tiling
Truncated order-5 square tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 8.8.5
Schläfli symbol t{4,5}
Wythoff symbol 2 5 | 4
Coxeter diagram
Symmetry group , (*542)
Dual Order-4 pentakis pentagonal tiling
Properties Vertex-transitive

In geometry, the truncated order-5 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{4,5}.

Related polyhedra and tiling

Uniform pentagonal/square tilings
Symmetry: , (*542) , (542) , (5*2) , (*552)
{5,4} t{5,4} r{5,4} 2t{5,4}=t{4,5} 2r{5,4}={4,5} rr{5,4} tr{5,4} sr{5,4} s{5,4} h{4,5}
Uniform duals
V5 V4.10.10 V4.5.4.5 V5.8.8 V4 V4.4.5.4 V4.8.10 V3.3.4.3.5 V3.3.5.3.5 V5
*n42 symmetry mutation of truncated tilings: n.8.8
Symmetry
*n42
Spherical Euclidean Compact hyperbolic Paracompact
*242
*342
*442
*542
*642
*742
*842
...
*∞42
Truncated
figures
Config. 2.8.8 3.8.8 4.8.8 5.8.8 6.8.8 7.8.8 8.8.8 ∞.8.8
n-kis
figures
Config. V2.8.8 V3.8.8 V4.8.8 V5.8.8 V6.8.8 V7.8.8 V8.8.8 V∞.8.8

References

See also

External links

Tessellation
Periodic


Aperiodic
Other
By vertex type
Spherical
Regular
Semi-
regular
Hyper-
bolic


Stub icon

This hyperbolic geometry-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: