Misplaced Pages

Pentahexagonal tiling

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Pentahexagonal tiling
Pentahexagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration (5.6
Schläfli symbol r{6,5} or { 6 5 } {\displaystyle {\begin{Bmatrix}6\\5\end{Bmatrix}}}
Wythoff symbol 2 | 6 5
Coxeter diagram
Symmetry group , (*652)
Dual Order-6-5 rhombille tiling
Properties Vertex-transitive edge-transitive

In geometry, the pentahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of r{6,5} or t1{6,5}.

Uniform colorings

Related polyhedra and tiling

Uniform hexagonal/pentagonal tilings
Symmetry: , (*652) , (652) , (5*3) , (*553)
{6,5} t{6,5} r{6,5} 2t{6,5}=t{5,6} 2r{6,5}={5,6} rr{6,5} tr{6,5} sr{6,5} s{5,6} h{6,5}
Uniform duals
V6 V5.12.12 V5.6.5.6 V6.10.10 V5 V4.5.4.6 V4.10.12 V3.3.5.3.6 V3.3.3.5.3.5 V(3.5)
*5n2 symmetry mutations of quasiregular tilings: (5.n)
Symmetry
*5n2
Spherical Hyperbolic Paracompact Noncompact
*352
*452
*552
*652
*752
*852
...
*∞52
 
Figures
Config. (5.3) (5.4) (5.5) (5.6) (5.7) (5.8) (5.∞) (5.ni)
Rhombic
figures
Config. V(5.3) V(5.4) V(5.5) V(5.6) V(5.7) V(5.8) V(5.∞) V(5.∞)
Symmetry mutation of quasiregular tilings: (6.n)
Symmetry
*6n2
Euclidean Compact hyperbolic Paracompact Noncompact
*632
*642
*652
*662
*762
*862
...
*∞62
 
Quasiregular
figures
configuration

6.3.6.3

6.4.6.4

6.5.6.5

6.6.6.6

6.7.6.7

6.8.6.8

6.∞.6.∞

6.∞.6.∞
Dual figures
Rhombic
figures
configuration

V6.3.6.3

V6.4.6.4

V6.5.6.5

V6.6.6.6

V6.7.6.7

V6.8.6.8

V6.∞.6.∞
reflective symmetry uniform tilings

References

See also

External links

Tessellation
Periodic


Aperiodic
Other
By vertex type
Spherical
Regular
Semi-
regular
Hyper-
bolic
Categories: