Revision as of 17:16, 11 April 2016 edit78.150.107.179 (talk) →Chemical synthesis← Previous edit | Latest revision as of 00:15, 6 January 2025 edit undoZergTwo (talk | contribs)39 editsm Undid revision 1267610527 by 2607:FEA8:1B21:8D00:2987:F465:FA99:DD7C (talk) undoing edit per MOS:SECTIONHEADTag: Undo | ||
Line 1: | Line 1: | ||
{{Short description|Life arising from non-living matter}} | |||
{{Redirect|Origin of life|non-scientific views on the origins of life|Creation myth}} | |||
{{Redirect|Origin of life |non-scientific<!--Please do not attempt to change this without obtaining wide consensus first, the wording has been carefully checked, thanks--> views on the origins of life|Creation myth}} | |||
{{Use dmy dates|date=March 2015}}<!-- publication dates use dmy but archive and access dates use ymd as allowed by MOSDATE --> | |||
{{Good article}} | |||
] ]s in the Siyeh Formation, ]. In 2002, a paper in the scientific journal '']'' suggested that these 3.5 ] (billion years) old geological formations contain fossilized ] ]. This suggests they are evidence of one of the earliest known life forms on ].]] | |||
{{Use dmy dates |date=June 2020}} | |||
{{Use American English |date=December 2019}} | |||
] and the abiotic synthesis of simple molecules, to the largely unknown, like the derivation of the ] (LUCA) with its complex molecular functionalities.<ref name="Walker Packard Cody 2017"/>]] | |||
<!--Please do not change the lead |
<!--Please do not change the lead paragraph without first discussing on the talk page.--> | ||
'''Abiogenesis''' is the natural process by which ] arises from ], such as simple ]s. The prevailing scientific<!--Please do not insert "theory", "speculative", "doubtful", etc., you can be blocked for pushing your point of view.--> ] is that the transition from non-living to ] on Earth was not a single event, but a process of increasing complexity involving the formation of a ], the prebiotic synthesis of organic molecules, molecular ], ], ], and the emergence of ]s. The transition from non-life to life has never been observed experimentally, but many proposals have been made for different stages of the process.<!-- Please do not add refs here; this is a summary only. --> | |||
'''Abiogenesis''' (Brit.: {{IPAc-en|ˌ|eɪ|ˌ|b|aɪ|oʊ|ˈ|dʒ|ɛ|n|ᵻ|s|ᵻ|s|,_|-|ˌ|b|aɪ|ə|-|,_|-|ˌ|b|iː|oʊ|-|,_|-|ˌ|b|iː|ə|-}}{{refn|Pronunciation: "/ˌeɪbʌɪə(ʊ)ˈdʒɛnɪsɪs/". {{cite encyclopedia |editor1-last=Pearsall |editor1-first=Judy |editor2-last=Hanks |editor2-first=Patrick |editor2-link=Patrick Hanks |encyclopedia=] |title=abiogenesis |edition=1st |year=1998 |publisher=] |location=Oxford, UK |isbn=0-19-861263-X |page=3}}}}{{refn|] On-line (2003)}}{{refn|{{Dictionary.com|Abiogenesis}}}}{{refn|{{MerriamWebsterDictionary|Abiogenesis}}}} {{respell|AY|by-oh|JEN|ə-siss}} or {{respell|AY|bee-oh|JEN|ə-siss}}) or '''biopoiesis'''<ref>{{harvnb|Bernal|1960|p=}}</ref> or '''OoL (Origins of Life),'''<ref name="AST-20151218">{{cite journal |author=Scharf, Caleb |title=A Strategy for Origins of Life Research |url=http://online.liebertpub.com/doi/pdfplus/10.1089/ast.2015.1113 |date=18 December 2015 |journal=] |volume=15 |issue=12 |pages=1031–1042 |doi=10.1089/ast.2015.1113 |accessdate=20 December 2015 |display-authors=etal}}</ref> is the natural process of ] arising from non-living matter, such as simple ]s.<ref>{{harvnb|Oparin|1953|p=vi}}</ref><ref>{{cite journal |last1=Warmflash |first1=David |last2=Warmflash |first2=Benjamin |date=November 2005 |title=Did Life Come from Another World? |journal=] |location=Stuttgart |publisher=] |volume=293 |issue=5 |pages=64–71 |doi=10.1038/scientificamerican1105-64 |issn=0036-8733}}</ref><ref>{{harvnb|Yarus|2010|p=47}}</ref><ref>{{cite journal |last=Peretó |first=Juli |year=2005 |title=Controversies on the origin of life |url=http://www.im.microbios.org/0801/0801023.pdf |format=PDF |journal=] |location=Barcelona |publisher=Spanish Society for Microbiology |volume=8 |issue=1 |pages=23–31 |pmid=15906258 |issn=1139-6709 |accessdate=2015-06-01}}</ref> It is thought to have occurred on ] between 3.8 and 4.1<ref>{{cite web|url=http://www.pnas.org/content/early/2015/10/14/1517557112|title=Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon|author=Elizabeth A. Bell|publisher=}}</ref> billion years ago, and is studied through a combination of laboratory experiments and extrapolation from the genetic information of modern ]s in order to make reasonable conjectures about what pre-life chemical reactions may have given rise to a living system.<ref>{{harvnb|Voet|Voet|2004|p=29}}</ref> | |||
The study of abiogenesis aims to determine how pre-life ]s gave rise to life under conditions strikingly different from those on Earth today. It primarily uses tools from ] and ], with more recent approaches attempting a synthesis of many sciences. Life functions through the specialized chemistry of ] and water, and builds largely upon four key families of chemicals: ]s for cell membranes, ]s such as sugars, ]s for protein metabolism, and ] ] and ] for the mechanisms of heredity. Any successful theory of abiogenesis must explain the origins and interactions of these classes of molecules. | |||
The study of abiogenesis involves three main types of considerations: the ], the ], and the ],<ref name="Dyson 1999">{{harvnb|Dyson|1999}}</ref> with more recent approaches attempting a synthesis of all three.<ref>Davies, Paul (1998) "The Fifth Miracle, Search for the origin and meaning of life" 9Penguin)</ref> Many approaches investigate how self-replicating ]s, or their components, came into existence. It is generally accepted that current life on Earth descended from an ],<ref name="RNA" /> although ]-based life may not have been the first life to have existed.<ref name="Robertson2012" /><ref name="Cech2012" /> The ] and similar experiments demonstrated that most ]s, basic chemicals of life, can be synthesized from inorganic compounds in conditions intended to be similar to ]. Several mechanisms of organic molecule synthesis have been investigated, including ] and ]. Other approaches ("metabolism first" hypotheses) focus on understanding how ] in chemical systems on the early Earth might have provided the precursor molecules necessary for ].<ref name="Ralser 2014">{{cite journal |last1=Keller |first1=Markus A. |last2=Turchyn |first2=Alexandra V. |last3=Ralser |first3=Markus |date=25 March 2014 |title=Non‐enzymatic glycolysis and pentose phosphate pathway‐like reactions in a plausible Archean ocean |journal=] |location=Heidelberg, Germany |publisher=EMBO Press on behalf of the ] |volume=10 |issue=725 |doi=10.1002/msb.20145228 |issn=1744-4292 |pmc=4023395 |pmid=24771084}}</ref> Complex ] have been found in the ] and in ], and these molecules may have provided ] for the development of life on Earth.<ref name="Ehrenfreund2010" /><ref name="Science 2015">{{cite news |last=Perkins |first=Sid |date=8 April 2015 |title=Organic molecules found circling nearby star |url=http://news.sciencemag.org/chemistry/2015/04/organic-molecules-found-circling-nearby-star?rss=1 |work=] |type=News |location=Washington, D.C. |publisher=] |issn=1095-9203 |accessdate=2015-06-02}}</ref><ref>{{cite news |last=King |first=Anthony |date=14 April 2015 |title=Chemicals formed on meteorites may have started life on Earth |url=http://www.rsc.org/chemistryworld/2015/04/meteorites-may-have-delivered-chemicals-started-life-earth |work=] |type=News |location=London |publisher=] |issn=1473-7604 |accessdate=2015-04-17}}</ref><ref>{{cite journal |last1=Saladino |first1=Raffaele |last2=Carota |first2=Eleonora |last3=Botta |first3=Giorgia |last4=Kapralov |first4=Mikhail |last5=Timoshenko |first5=Gennady N. |last6=Rozanov |first6=Alexei Y. |last7=Krasavin |first7=Eugene |last8=Di Mauro |first8=Ernesto |display-authors=3 |date=13 April 2015 |title=Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation |journal=] |location=Washington, D.C. |publisher=] |volume=112 |issue=21 |doi=10.1073/pnas.1422225112 |pages=E2746–E2755 |issn=1091-6490 |pmid=25870268}}</ref> | |||
Many approaches to abiogenesis investigate how self-replicating molecules, or their components, came into existence. Researchers generally think that current life descends from an ], although other self-replicating and self-catalyzing molecules may have preceded RNA. <!-- Please do not add refs here, this is a summary only -->Other approaches (]) focus on understanding how ] in chemical systems on the early Earth might have provided the ] necessary for self-replication. The classic 1952 ] demonstrated that most amino acids, the chemical constituents of ]s, can be synthesized from ]s under conditions intended to replicate those of the ]. External sources of energy may have triggered these reactions, including ], ], atmospheric entries of micro-meteorites, and implosion of bubbles in sea and ocean waves. <!-- Please do not add refs here, this is a summary only --> | |||
The ] hypothesis suggests that ] was distributed by ]s, ]s and other ] and that life may exist throughout the ].<ref name="USRA-2010">{{cite conference |url=http://www.lpi.usra.edu/meetings/abscicon2010/pdf/5224.pdf |title=Panspermia: A Promising Field Of Research |last=Rampelotto |first=Pabulo Henrique |date=26 April 2010 |conference=Astrobiology Science Conference 2010 |conference-url=http://www.lpi.usra.edu/meetings/abscicon2010/ |publisher=] |location=Houston, TX |page=5224 |format=PDF |bibcode=2010LPICo1538.5224R |accessdate=2014-12-03}} Conference held at League City, TX</ref> It is speculated that the ] of life may have begun shortly after the ], 13.8 billion years ago, during a ] ] when the ] was only 10–17 million years.<ref name="IJA-2014October_ARXIV-20131202">{{cite journal |last=Loeb |first=Abraham |authorlink=Abraham (Avi) Loeb |date=October 2014 |title=The habitable epoch of the early Universe |journal=] |location=Cambridge, UK |publisher=] |volume=13 |issue=4 |pages=337–339 |arxiv=1312.0613 |bibcode=2014IJAsB..13..337L |doi=10.1017/S1473550414000196 |issn=1473-5504}} | |||
* {{cite arXiv |last=Loeb |first=Abraham |eprint=1312.0613v3 |title=The Habitable Epoch of the Early Universe |class=astro-ph.CO |date=3 June 2014}}</ref><ref name="NYT-20141202">{{cite news |last=Dreifus |first=Claudia |authorlink=Claudia Dreifus |date=2 December 2014 |title=Much-Discussed Views That Go Way Back |url=http://www.nytimes.com/2014/12/02/science/avi-loeb-ponders-the-early-universe-nature-and-life.html |newspaper=] |location=New York |publisher=] |page=D2 |issn=0362-4331 |accessdate=2014-12-03}}</ref> The panspermia hypothesis answers the question of whence life, not how life came to be; it only postulates the origin of life to a locale outside the Earth. | |||
While the ] of all modern organisms (LUCA) is thought to have been quite different from the origin of life, investigations into LUCA can guide research into early universal characteristics. A ] approach has sought to characterize LUCA by identifying the genes shared by ] and ], members of the two major branches of life (with ]s included in the archaean branch in the ]). It appears there are 60 proteins common to all life and ] that trace to LUCA; their functions imply that the LUCA was ] with the ], deriving energy by ], and maintaining its hereditary material with DNA, the ], and ]s. Although the LUCA lived over 4 billion years ago (4 ]), researchers believe it was far from the first form of life. Earlier cells might have had a leaky membrane and been powered by a naturally occurring ] near a deep-sea white smoker ].<!-- Please do not add refs here, this is a summary only --> | |||
Nonetheless, Earth is the only place in the Universe known to harbor life.<ref name="NASA-1990">{{cite web |url=http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19900013148.pdf |title=Extraterrestrial Life in the Universe |last=Graham |first=Robert W. |date=February 1990 |place=], Cleveland, Ohio |publisher=] |type=NASA Technical Memorandum 102363 |format=PDF |accessdate=2015-06-02}}</ref><ref>{{harvnb|Altermann|2009|p=xvii}}</ref> The ] is about 4.54 billion years.<ref name="USGS1997">{{cite web |url=http://pubs.usgs.gov/gip/geotime/age.html |title=Age of the Earth |date=9 July 2007 |publisher=] |accessdate=2006-01-10}}</ref><ref>{{harvnb|Dalrymple|2001|pp=205–221}}</ref><ref>{{cite journal |last1=Manhesa |first1=Gérard |last2=Allègre |first2=Claude J. |authorlink2=Claude Allègre |last3=Dupréa |first3=Bernard |last4=Hamelin |first4=Bruno |date=May 1980 |title=Lead isotope study of basic-ultrabasic layered complexes: Speculations about the age of the earth and primitive mantle characteristics |journal=] |location=Amsterdam, the Netherlands |publisher=] |volume=47 |issue=3 |pages=370–382 |bibcode=1980E&PSL..47..370M |doi=10.1016/0012-821X(80)90024-2 |issn=0012-821X}}</ref> The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,<ref name="Origin1">{{cite journal |last1=Schopf |first1=J. William |authorlink1=J. William Schopf |last2=Kudryavtsev |first2=Anatoliy B. |last3=Czaja |first3=Andrew D. |last4=Tripathi |first4=Abhishek B. |date=5 October 2007 |title=Evidence of Archean life: Stromatolites and microfossils |journal=] |location=Amsterdam, the Netherlands |publisher=Elsevier |volume=158 |pages=141–155 |issue=3–4 |doi=10.1016/j.precamres.2007.04.009 |issn=0301-9268}}</ref><ref name="Origin2">{{cite journal |last=Schopf |first=J. William |date=29 June 2006 |title=Fossil evidence of Archaean life |journal=] |location=London |publisher=] |volume=361 |issue=1470 |pages=869–885 |doi=10.1098/rstb.2006.1834 |issn=0962-8436 |pmid=16754604 |pmc=1578735}}</ref><ref name="RavenJohnson2002">{{harvnb|Raven|Johnson|2002|p=68}}</ref> during the ] Era after a geological ] started to solidify following the earlier molten ] ]. There are ] ]s found in 3.48 billion-year-old ] discovered in ].<ref name="AP-20131113">{{cite news |last=Borenstein |first=Seth |date=13 November 2013 |title=Oldest fossil found: Meet your microbial mom |url=http://apnews.excite.com/article/20131113/DAA1VSC01.html |work=] |location=Yonkers, NY |publisher=] |agency=] |accessdate=2015-06-02}}</ref><ref name="TG-20131113-JP">{{cite news |last=Pearlman |first=Jonathan |date=13 November 2013 |title='Oldest signs of life on Earth found' |url=http://www.telegraph.co.uk/news/science/science-news/10445788/Oldest-signs-of-life-on-Earth-found.html |newspaper=] |location=London |publisher=] |accessdate=2014-12-15}}</ref><ref name="AST-20131108">{{cite journal |last1=Noffke |first1=Nora |last2=Christian |first2=Daniel |last3=Wacey |first3=David |last4=Hazen |first4=Robert M. |authorlink4=Robert Hazen |date=16 November 2013 |title=Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ''ca.'' 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia |journal=] |location=New Rochelle, NY |publisher=] |volume=13 |issue=12 |pages=1103–1124 |bibcode=2013AsBio..13.1103N |doi=10.1089/ast.2013.1030 |issn=1531-1074 |pmc=3870916 |pmid=24205812}}</ref> Other early physical evidence of a ] is ] in 3.7 billion-year-old ] discovered in southwestern ]<ref name="NG-20131208">{{cite journal |last1=Ohtomo |first1=Yoko |last2=Kakegawa |first2=Takeshi |last3=Ishida |first3=Akizumi |last4=Nagase |first4=Toshiro |last5=Rosing |first5=Minik T. |display-authors=3 |date=January 2014 |title=Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks |journal=] |location=London |publisher=] |volume=7 |issue=1 |pages=25–28 |bibcode=2014NatGe...7...25O |doi=10.1038/ngeo2025 |issn=1752-0894}}</ref> as well as "remains of ]" found in 4.1 billion-year-old rocks in Western Australia.<ref name="AP-20151019">{{cite news |last=Borenstein |first=Seth |title=Hints of life on what was thought to be desolate early Earth |url=http://apnews.excite.com/article/20151019/us-sci--earliest_life-a400435d0d.html |date=19 October 2015 |work=] |location=Yonkers, NY |publisher=] |agency=] |accessdate=2015-10-20}}</ref><ref name="PNAS-20151014-pdf">{{cite journal |last1=Bell |first1=Elizabeth A. |last2=Boehnike |first2=Patrick |last3=Harrison |first3=T. Mark |last4=Mao |first4=Wendy L. |display-authors=3 |date=19 October 2015 |title=Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon |url=http://www.pnas.org/content/early/2015/10/14/1517557112.full.pdf |format=PDF |journal=Proc. Natl. Acad. Sci. U.S.A. |location=Washington, D.C. |publisher=National Academy of Sciences |doi=10.1073/pnas.1517557112 |issn=1091-6490 |accessdate=2015-10-20 |pages=201517557 |pmid=26483481 |pmc=4664351 |volume=112}} Early edition, published online before print.</ref> According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the ]."<ref name="AP-20151019" /> <!---Also, ] suggest that life on Earth may have started even earlier,<ref name="AB-20021014">{{cite web |last=Tenenbaum |first=David |title=When Did Life on Earth Begin? Ask a Rock |url=http://www.astrobio.net/exclusive/293/when-did-life-on-earth-begin-ask-a-rock |date=14 October 2002 |work=Astrobiology Magazine |accessdate=2014-04-13}}</ref> as early as 4.25 billion years ago according to one study,<ref name="NS-20080702">{{cite web |last=Courtland |first=Rachel |title=Did newborn Earth harbour life? |url=http://www.newscientist.com/article/dn14245-did-newborn-earth-harbour-life.html |date=2 July 2008 |work=] |accessdate=2014-04-13}}</ref> and 4.4 billion years ago according to another study.<ref name="RN-20090520">{{cite web |last=Steenhuysen |first=Julie |title=Study turns back clock on origins of life on Earth |url=http://www.reuters.com/article/2009/05/20/us-asteroids-idUSTRE54J5PX20090520 |date=20 May 2009 |work=] |accessdate=2014-04-13}}</ref>---> | |||
Earth remains the only place in the ] known to harbor life. ] and ] from the Earth informs most studies of abiogenesis. The ] was formed at 4.54 Gya, and the earliest evidence of life on Earth dates from at least 3.8 Gya from ]. Some studies have suggested that ] may have lived within hydrothermal vent precipitates dated 3.77 to 4.28 Gya ], soon after ] 4.4 Gya during the ].<!-- Please do not add refs here, this is a summary only --> | |||
== Early geophysical conditions == | |||
{{Life graphical timeline}} | |||
== Overview == | |||
{{Main|Timeline of the evolutionary history of life}} | |||
Based on recent ], the ] necessary for life may have formed in the ] of ] surrounding the ] before the formation of the Earth.<ref name="Space-20120329">{{cite news |last=Moskowitz |first=Clara |date=29 March 2012 |title=Life's Building Blocks May Have Formed in Dust Around Young Sun |url=http://www.space.com/15089-life-building-blocks-young-sun-dust.html |work=] |location=Salt Lake City, UT |publisher=] |accessdate=2012-03-30}}</ref> According to the computer studies, this same process may also occur around other ]s that acquire ]s.<ref name="Space-20120329" /> (Also see ]). | |||
{{Further|Astrobiology}} | |||
The Hadean Earth is thought to have had a ], formed through ] of the rocks that accumulated from ] ]. At first, it was thought that the Earth's ] consisted of ]s—], ] and ]—and that life began under such ] conditions, which are conducive to the formation of organic molecules. During its formation, the Earth lost a significant part of its initial mass, with a nucleus of the heavier rocky elements of the protoplanetary disk remaining.<ref>{{harvnb|Fesenkov|1959|p=9}}</ref> According to later models, suggested by study of ancient minerals, the atmosphere in the late Hadean period consisted largely of ] and ], with smaller amounts of ], ], and ] compounds.<ref>{{cite journal |last=Kasting |first=James F. |authorlink=James Kasting |date=12 February 1993 |title=Earth's Early Atmosphere |url=http://wwwdca.iag.usp.br/www/material/fornaro/ACA410/Kasting%201993_EarthEarlyAtmos.pdf |format=PDF |journal=Science |location=Washington, D.C. |publisher=American Association for the Advancement of Science |volume=259 |issue=5097 |page=922 |doi=10.1126/science.11536547 |issn=0036-8075 |pmid=11536547 |accessdate=2015-07-28 |ref=harv}}</ref> As Earth lacked the ] to hold any molecular hydrogen, this component of the atmosphere would have been rapidly lost during the Hadean period, along with the bulk of the original inert gases. The solution of carbon dioxide in water is thought to have made the seas slightly ]ic, giving it a ] of about 5.5.{{citation needed|date=January 2016}} The atmosphere at the time has been characterized as a "gigantic, productive outdoor chemical laboratory."<ref name="Follmann2009" /> It may have been similar to the mixture of gases released today by volcanoes, which still support some abiotic chemistry.<ref name="Follmann2009" /> | |||
] aimed to solve the puzzle of the origin of life – how a fully functioning living system could emerge from non-living components – through research on the prebiotic origin of ], both in ] and on ]s, as well as the functioning of early biomolecules to ] reactions and support ].<ref name="NASA strategy 2015"/>]] | |||
] may have ] in the Hadean Eon, as soon as two hundred million years (200 ]) after the Earth was formed, in a hot {{convert|100|°C|°F}} reducing environment, and the pH of about 5.8 rose rapidly towards neutral.<ref>{{cite journal |last1=Morse |first1=John W. |last2=MacKenzie |first2=Fred T. |authorlink2=Fred T. Mackenzie (scientist) |year=1998 |title=Hadean Ocean Carbonate Geochemistry |journal=Aquatic Geochemistry |publisher=Kluwer Academic Publishers |volume=4 |issue=3–4 |pages=301–319 |doi=10.1023/A:1009632230875 |issn=1380-6165}}</ref> This has been supported by the dating of 4.404 ]-old ] crystals from metamorphosed ] of ] in Western Australia, which are evidence that oceans and ] existed within 150 ] of Earth's formation.<ref name="Wilde2001">{{cite journal |last1=Wilde |first1=Simon A. |last2=Valley |first2=John W. |last3=Peck |first3=William H. |last4=Graham |first4=Colin M. |date=11 January 2001 |title=Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago |url=http://www.geology.wisc.edu/~valley/zircons/Wilde2001Nature.pdf |format=PDF |journal=] |location=London |publisher=Nature Publishing Group |volume=409 |issue=6817 |pages=175–178 |doi=10.1038/35051550 |issn=0028-0836 |pmid=11196637 |accessdate=2015-06-03}}</ref> Despite the likely increased vulcanism and existence of many smaller ] "platelets," it has been suggested that between 4.4 and 4.3 Ga (billion year), the Earth was a water world, with little if any continental crust, an extremely ] atmosphere and a ] subject to intense ] (UV) light, from a ], ] and continued ] impacts.<ref name="rise.2006">{{cite journal |last=Rosing |first=Minik T. |last2=Bird |first2=Dennis K. |last3=Sleep |first3=Norman H. |last4=Glassley |first4=William |last5=Albarède |first5=Francis |authorlink5=Francis Albarède |display-authors=3 |date=22 March 2006 |title=The rise of continents—An essay on the geologic consequences of photosynthesis |url=http://www.researchgate.net/profile/Francis_Albarede/publication/223066196_The_rise_of_continentsAn_essay_on_the_geologic_consequences_of_photosynthesis/links/00b7d51766c442f58b000000.pdf |format=PDF |journal=] |location=Amsterdam, the Netherlands |publisher=Elsevier |volume=232 |issue=2–4 |pages=99–113 |doi=10.1016/j.palaeo.2006.01.007 |issn=0031-0182 |accessdate=2015-06-08}}</ref> | |||
] consists of reproduction with (heritable) variations.<ref name="JBSD-20110317">{{cite journal |last=Trifonov |first=Edward N. |author-link=Edward Trifonov |title=Vocabulary of Definitions of Life Suggests a Definition |date=17 March 2011 |journal=Journal of Biomolecular Structure and Dynamics |volume=29 |issue=2 |pages=259–266 |doi=10.1080/073911011010524992 |pmid=21875147 |s2cid=38476092 |doi-access=free |issn=0739-1102 }}</ref> ] defines life as "a self-sustaining chemical system capable of evolution]]."<ref name="NASA-20210306">{{cite web |last=Voytek |first=Mary A. |author-link=Mary Voytek |title=About Life Detection |url=https://astrobiology.nasa.gov/research/life-detection/about/ |date=6 March 2021 |publisher=] |access-date=8 March 2021 |archive-date=16 August 2021 |archive-url=https://web.archive.org/web/20210816150806/https://astrobiology.nasa.gov/research/life-detection/about/ |url-status=live }}</ref> Such a system is complex; the ] (LUCA), presumably a single-celled organism which lived some 4 billion years ago, already had hundreds of ]s encoded in the ] ] that is universal today. That in turn implies a suite of cellular machinery including ], ], and ]s to translate the code into ]s. Those proteins included ]s to operate its ] via the ], and a ] to replicate its genetic material.<ref name="Witzany 2016"/><ref name="AB-20141208"/> | |||
The Hadean environment would have been highly hazardous to modern life. Frequent collisions with large objects, up to {{convert|500|km|mi}} in diameter, would have been sufficient to sterilise the planet and vaporise the ocean within a few months of impact, with hot steam mixed with rock vapour becoming high altitude clouds that would completely cover the planet. After a few months, the height of these clouds would have begun to decrease but the cloud base would still have been elevated for about the next thousand years. After that, it would have begun to rain at low altitude. For another two thousand years, rains would slowly have drawn down the height of the clouds, returning the oceans to their original depth only 3,000 years after the impact event.<ref>{{cite journal |last=Sleep |first=Norman H. |last2=Zahnle |first2=Kevin J. |authorlink2=Kevin J. Zahnle |last3=Kasting |first3=James F. |last4=Morowitz |first4=Harold J. |authorlink4=Harold J. Morowitz |display-authors=3 |date=9 November 1989 |title=Annihilation of ecosystems by large asteroid impacts on early Earth |journal=Nature |location=London |publisher=Nature Publishing Group |volume=342 |issue=6246|pages=139–142 |bibcode=1989Natur.342..139S |doi=10.1038/342139a0 |issn=0028-0836 |pmid=11536616}}</ref> | |||
The challenge for abiogenesis (origin of life)<ref>{{cite book |last=Oparin |first=Aleksandr Ivanovich |author-link=Alexander Oparin |translator-last=Morgulis |translator-first=Sergius |orig-year=1938 |title=The Origin of Life |url=https://books.google.com/books?id=Jv8psJCtI0gC |edition=2 |location=Mineola, New York |publisher=Courier |date=2003 |isbn=978-0-486-49522-4 |access-date=16 June 2018 |archive-date=2 April 2023 |archive-url=https://web.archive.org/web/20230402201809/https://books.google.com/books?id=Jv8psJCtI0gC |url-status=live }}</ref><ref name=Pereto /><ref name="AST-20151218">Compare: {{cite journal |last=Scharf |first=Caleb |title=A Strategy for Origins of Life Research |date=18 December 2015 |journal=] |volume=15 |issue=12 |pages=1031–1042 |doi=10.1089/ast.2015.1113 |display-authors=etal |pmid=26684503 |pmc=4683543 |bibcode=2015AsBio..15.1031S |quote=What do we mean by the origins of life (OoL)? ... Since the early 20th century the phrase OoL has been used to refer to the events that occurred during the transition from non-living to living systems on Earth, i.e., the origin of terrestrial biology (Oparin, 1924; Haldane, 1929). The term has largely replaced earlier concepts such as abiogenesis (Kamminga, 1980; Fry, 2000).}}</ref> researchers is to explain how such a complex and tightly interlinked system could develop by evolutionary steps, as at first sight ] to enable it to function. For example, a cell, whether the LUCA or in a modern organism, copies its DNA with the DNA polymerase enzyme, which is in turn produced by translating the DNA polymerase gene in the DNA. Neither the enzyme nor the DNA can be produced without the other.<ref name="Weiss Sousa Mrnjavac 2016"/> The evolutionary process could have involved molecular ], ] such as of ]s, and ] via RNA ]s.<ref name="Witzany 2016">{{cite journal |last=Witzany |first=Guenther |title=Crucial steps to life: From chemical reactions to code using agents |journal=] |year=2016 |volume=140 |pages=49–57 |url=http://www.biocommunication.at/pdf/publications/biosystems_2016.pdf |doi=10.1016/j.biosystems.2015.12.007 |pmid=26723230 |bibcode=2016BiSys.140...49W |s2cid=30962295 |access-date=30 October 2018 |archive-date=31 October 2018 |archive-url=https://web.archive.org/web/20181031052532/http://www.biocommunication.at/pdf/publications/biosystems_2016.pdf |url-status=live }}</ref><ref name="AB-20141208">{{cite web |last=Howell |first=Elizabeth |title=How Did Life Become Complex, And Could It Happen Beyond Earth? |url=https://www.astrobio.net/origin-and-evolution-of-life/life-become-complex-happen-beyond-earth/ |date=8 December 2014 |work=] |access-date=14 April 2022 |url-status=usurped |archive-url=https://web.archive.org/web/20180215024231/https://www.astrobio.net/origin-and-evolution-of-life/life-become-complex-happen-beyond-earth/ |archive-date=15 February 2018}}</ref><ref name="EA-20150420">{{cite book |last=Tirard |first=Stephane |title=Encyclopedia of Astrobiology |chapter=Abiogenesis |date=20 April 2015 |doi=10.1007/978-3-642-27833-4_2-4 |isbn=978-3-642-27833-4 |page=1 |quote=Thomas Huxley (1825–1895) used the term abiogenesis in an important text published in 1870. He strictly made the difference between spontaneous generation, which he did not accept, and the possibility of the evolution of matter from inert to living, without any influence of life. ... Since the end of the nineteenth century, evolutive abiogenesis means increasing complexity and evolution of matter from inert to living state in the abiotic context of evolution of primitive Earth.}}</ref> Nonetheless, the transition of non-life to life has never been observed experimentally, nor has there been a satisfactory chemical explanation.<ref>{{cite book |last1=Luisi |first1=Pier Luigi |title=The Emergence of Life: From Chemical Origins to Synthetic Biology |date=2018 |publisher=] |isbn=9781108735506 |page=416 |quote=However, the turning point of non-life to life has never been put into one experimental set up. There are, of course, several hypotheses, and this plethora of ideas means already that we do not have a convincing one.}}</ref> | |||
=== The earliest biological evidence for life on Earth === | |||
The earliest life on Earth existed before 3.5 billion years ago,<ref name="Origin1" /><ref name="Origin2" /><ref name="RavenJohnson2002" /> during the ] Era when sufficient crust had solidified following the molten Hadean Eon. Physical evidence has been found in biogenic graphite in 3.7 billion-year-old metasedimentary rocks from southwestern Greenland<ref name="NG-20131208" /> and microbial mat fossils found in 3.48 billion-year-old sandstone from Western Australia.<ref name="AP-20131113" /><ref name="AST-20131108" /> Evidence of early life in rocks from ] Island, near the ] in southwestern Greenland, dating to 3.7 billion years ago have shown biogenic carbon ]s.<ref>{{harvnb|Davies|1999}}</ref> At Strelley Pool, in the ] region of Western Australia, compelling evidence of early life has been found in ]-bearing sandstone in a fossilized beach, that showed rounded tubular cells that oxidised sulfur by ] in the absence of oxygen.<ref>{{cite journal |last=O'Donoghue |first=James |date=21 August 2011 |url=http://www.newscientist.com/article/dn20813-oldest-reliable-fossils-show-early-life-was-a-beach.html |title=Oldest reliable fossils show early life was a beach |journal=] |location=London |publisher=] |issn=0262-4079 |accessdate=2014-10-13}} | |||
* {{cite journal |last1=Wacey |first1=David |last2=Kilburn |first2=Matt R. |last3=Saunders |first3=Martin |last4=Cliff |first4=John |last5=Brasier |first5=Martin D. |authorlink5=Martin Brasier |display-authors=3 |date=October 2011 |title=Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia |journal=Nature Geoscience |location=London |publisher=Nature Publishing Group |volume=4 |issue=10 |pages=698–702 |bibcode=2011NatGe...4..698W |doi=10.1038/ngeo1238 |issn=1752-0894}}</ref> More recently, geochemists have found evidence that life likely existed on Earth at least 4.1 billion years ago — 300 million years earlier than previous research suggested.<ref name="AP-20151019" /><ref name="PNAS-20151014-pdf" /><ref name="UCLA-20151019">{{cite web |last1=Wolpert |first1=Stuart |title=Life on Earth likely started at least 4.1 billion years ago — much earlier than scientists had thought|url=http://newsroom.ucla.edu/releases/life-on-earth-likely-started-at-least-4-1-billion-years-ago-much-earlier-than-scientists-had-thought |date=19 October 2015 |publisher=] |accessdate=20 October 2015 }}</ref> | |||
The preconditions to the development of a living cell like the LUCA are clear enough, though disputed in their details: a habitable world is formed with a supply of minerals and liquid water. Prebiotic synthesis creates a range of simple organic compounds, which are assembled into polymers such as proteins and RNA. On the other side, the process after the LUCA is readily understood: biological evolution caused the development of a wide range of species with varied forms and biochemical capabilities. However, the derivation of living things such as LUCA from simple components is far from understood.<ref name="Walker Packard Cody 2017">{{cite journal |last1=Walker |first1=Sara I. |last2=Packard |first2=N. |last3=Cody |first3=G. D. |title=Re-conceptualizing the origins of life |journal=] |volume=375 |issue=2109 |date=13 November 2017 |doi=10.1098/rsta.2016.0337 |page=20160337 |pmid=29133439 |pmc=5686397 |bibcode=2017RSPTA.37560337W}}</ref> | |||
In the earlier period between 3.8 and 4.1 Ga, changes in the orbits of the ]s may have caused a ] by asteroids and ]s<ref>{{cite journal |last1=Gomes |first1=Rodney |last2=Levison |first2=Hal F. |authorlink2=Harold F. Levison |last3=Tsiganis |first3=Kleomenis |last4=Morbidelli |first4=Alessandro |authorlink4=Alessandro Morbidelli (astronomer) |date=26 May 2005 |title=Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets |journal=Nature |location=London |publisher=Nature Publishing Group |volume=435 |issue=7041 |pages=466–469 |bibcode=2005Natur.435..466G |doi=10.1038/nature03676 |issn=0028-0836 |pmid=15917802}}</ref> that pockmarked the ] and the other inner planets (], ], and presumably Earth and ]). This would likely have repeatedly sterilized the planet, had life appeared before that time.<ref name="Follmann2009" /> Geologically, the Hadean Earth would have been far more active than at any other time in its history. Studies of ]s suggests that ] such as ] with a ] of 7.17×10<sup>5</sup> years, and ] with a half-life of 1.250×10<sup>9</sup> years, isotopes mainly produced in ]e, were much more common.<ref>{{harvnb|Davies|2007|pp=61–73}}</ref> Coupled with internal heating as a result of ] between the ] and the ], there would have been a great deal of ], with the probable result of many more smaller and much more active tectonic plates than now exist. | |||
Although Earth remains the only place where life is known,<ref name="NASA-1990">{{cite journal |url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19900013148.pdf |title=Extraterrestrial Life in the Universe |last=Graham |first=Robert W. |date=February 1990 |location=], Cleveland, Ohio |website=] |type=NASA Technical Memorandum 102363 |access-date=2015-06-02 |url-status=live |archive-url=https://web.archive.org/web/20140903100534/http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19900013148.pdf |archive-date=3 September 2014}}</ref><ref>{{harvnb|Altermann|2009|p=xvii}}</ref> the science of ] seeks evidence of life on other planets. The 2015 NASA strategy on the origin of life aimed to solve the puzzle by identifying interactions, intermediary structures and functions, energy sources, and environmental factors that contributed to the diversity, selection, and replication of evolvable macromolecular systems,<ref name="NASA strategy 2015">{{cite web |title=NASA Astrobiology Strategy |year=2015 |work=NASA |access-date=24 September 2017 |url=https://nai.nasa.gov/media/medialibrary/2015/10/NASA_Astrobiology_Strategy_2015_151008.pdf |archive-url=https://web.archive.org/web/20161222190306/https://nai.nasa.gov/media/medialibrary/2015/10/NASA_Astrobiology_Strategy_2015_151008.pdf |archive-date=22 December 2016}}</ref> and mapping the chemical landscape of potential primordial informational ]s. The advent of polymers that could replicate, store genetic information, and exhibit properties subject to selection was, it suggested, most likely a critical step in the ] of prebiotic chemical evolution.<ref name="NASA strategy 2015"/> Those polymers derived, in turn, from simple ]s such as ]s, ]s, and ]s that could have been formed by reactions in the environment.<ref name=Oparin>{{harvnb|Oparin|1953|p=vi}}</ref><ref name=Pereto>{{cite journal |last=Peretó |first=Juli |year=2005 |title=Controversies on the origin of life |url=http://www.im.microbios.org/0801/0801023.pdf |journal=] |volume=8 |issue=1 |pages=23–31 |pmid=15906258 |access-date=1 June 2015 |archive-url=https://web.archive.org/web/20150824074726/http://www.im.microbios.org/0801/0801023.pdf |archive-date=24 August 2015}}</ref><ref>{{cite journal |last1=Warmflash |first1=David |last2=Warmflash |first2=Benjamin |date=November 2005 |title=Did Life Come from Another World? |journal=] |volume=293 |issue=5 |pages=64–71 |doi=10.1038/scientificamerican1105-64 |pmid=16318028 |bibcode=2005SciAm.293e..64W}}</ref><ref>{{harvnb|Yarus|2010|p=47}}</ref> A successful theory of the origin of life must explain how all these chemicals came into being.<ref>{{cite book |last1=Ward |first1=Peter |last2=Kirschvink |first2=Joe |author2-link=Joseph Kirschvink |date=2015 |title=A New History of Life: the radical discoveries about the origins and evolution of life on earth |publisher=] |pages=39–40 |isbn=978-1-60819-910-5}}</ref> | |||
The time periods between such devastating environmental events give time windows for the possible origin of life in the early environments. A study by Kevin A. Maher and David J. Stevenson shows that if the deep marine hydrothermal setting provides a suitable site for the origin of life, then abiogenesis could have happened as early as 4.0 to 4.2 Ga, whereas if it occurred at the surface of the Earth, abiogenesis could only have occurred between 3.7 and 4.0 Ga.<ref>{{cite journal |last1=Maher |first1=Kevin A. |last2=Stevenson |first2=David J. |date=18 February 1988 |title=Impact frustration of the origin of life |journal=Nature |location=London |publisher=Nature Publishing Group |volume=331 |issue=6157 |pages=612–614 |bibcode=1988Natur.331..612M |doi=10.1038/331612a0 |issn=0028-0836 |pmid=11536595}}</ref> | |||
== |
== Pre-1960s conceptual history == | ||
{{Main|History of research into the origin of life}} | |||
] was a synthesis of small organic molecules in a mixture of simple gases in a thermal gradient created by heating (right) and cooling (left) the mixture at the same time, with electrical discharges.]] | |||
=== Spontaneous generation === | === Spontaneous generation === | ||
{{Main|Spontaneous generation}} | {{Main|Spontaneous generation}} | ||
One ancient view of the origin of life, from ] until the 19th century, is of ].<ref>{{harvnb|Sheldon|2005}}</ref> This theory held that "lower" animals such as insects were generated by decaying organic substances, and that life arose by chance.<ref>{{harvnb|Lennox|2001|pp=229–258}}</ref><ref name="Bernal 1967">{{harvnb|Bernal|1967}}</ref> This was questioned from the 17th century, in works like ]'s '']''.<ref>{{cite journal |last=Balme |first=D. M. |author-link=David Mowbray Balme |year=1962 |title=Development of Biology in Aristotle and Theophrastus: Theory of Spontaneous Generation |journal=] |volume=7 |issue=1–2 |pages=91–104 |doi=10.1163/156852862X00052}}</ref><ref>{{harvnb|Ross|1652}}</ref> In 1665, ] published the first drawings of a ]. In 1676, ] drew and described microorganisms, probably ] and ].<ref>{{harvnb|Dobell|1960}}</ref> Van Leeuwenhoek disagreed with spontaneous generation, and by the 1680s convinced himself, using experiments ranging from sealed and open meat incubation and the close study of insect reproduction, that the theory was incorrect.<ref>{{harvnb|Bondeson|1999}}</ref> In 1668 ] showed that no ]s appeared in meat when flies were prevented from laying eggs.<ref name=lev>{{cite web |last1=Levine |first1=R. |last2=Evers |first2=C. |title=The Slow Death of Spontaneous Generation (1668-1859) |url=http://www.accessexcellence.org/RC/AB/BC/Spontaneous_Generation.php |access-date=18 April 2013 |archive-url=https://web.archive.org/web/20080426191204/http://www.accessexcellence.org/RC/AB/BC/Spontaneous_Generation.php |archive-date=26 April 2008}}</ref> By the middle of the 19th century, spontaneous generation was considered disproven.<ref>{{harvnb|Oparin|1953|p=196}}</ref><ref name="Tyndall Fragments2">{{harvnb|Tyndall|1905|loc=IV, XII (1876), XIII (1878)}}</ref> | |||
Belief in spontaneous generation of certain forms of life from non-living matter goes back to ] and ancient Greek philosophy and continued to have support in Western scholarship until the 19th century.<ref>{{harvnb|Sheldon|2005}}</ref> This belief was paired with a belief in heterogenesis, i.e., that one form of life derived from a different form (e.g., bees from flowers).<ref>{{harvnb|Vartanian|1973|pp=307–312}}</ref> Classical notions of spontaneous generation held that certain complex, living organisms are generated by decaying organic substances. According to Aristotle, it was a readily observable truth that ]s arise from the dew that falls on plants, ] from putrid matter, mice from dirty hay, crocodiles from rotting logs at the bottom of bodies of water, and so on.<ref>{{harvnb|Lennox|2001|pp=229–258}}</ref> In the 17th century, people began to question such assumptions. In 1646, ] published his '']'' (subtitled ''Enquiries into Very many Received Tenets, and commonly Presumed Truths''), which was an attack on false beliefs and "vulgar errors." His contemporary, ], erroneously refuted him, stating: "To question this , is to question Reason, Sense, and Experience: If he doubts of this, let him go to '']'', and there he will finde the fields swarming with mice begot of the mud of '']'', to the great calamity of the Inhabitants."<ref>{{cite journal |last=Balme |first=D. M. |authorlink=David Mowbray Balme |year=1962 |title=Development of Biology in Aristotle and Theophrastus: Theory of Spontaneous Generation |journal=] |location=Leiden, the Netherlands |publisher=] |volume=7 |issue=1–2 |pages=91–104 |doi=10.1163/156852862X00052 |issn=0031-8868}}</ref><ref>{{harvnb|Ross|1652}}</ref> | |||
=== Panspermia === | |||
In 1665, ] published the first drawings of a ]. Hooke was followed in 1676 by ], who drew and described microorganisms that are now thought to have been ] and ].<ref>{{harvnb|Dobell|1960}}</ref> Many felt the existence of microorganisms was evidence in support of spontaneous generation, since microorganisms seemed too simplistic for ], and ] through ] had not yet been observed. Van Leeuwenhoek took issue with the ideas common at the time that fleas and lice could spontaneously result from ], and that frogs could likewise arise from slime. Using a broad range of experiments ranging from sealed and open meat incubation and the close study of insect reproduction he became, by the 1680s, convinced that spontaneous generation was incorrect.<ref>{{harvnb|Bondeson|1999}}</ref> | |||
{{Main|Panspermia}} | |||
Another ancient idea dating back to ] in the 5th century BC is ],<ref name="Gerda Horneck">{{cite journal |last1=Horneck |first1=Gerda |last2=Klaus |first2=David M. |last3=Mancinelli |first3=Rocco L. |date=March 2010 |title=Space Microbiology |journal=] |volume=74 |issue=1 |pages=121–156 |doi=10.1128/MMBR.00016-09 |pmc=2832349 |pmid=20197502 |bibcode=2010MMBR...74..121H}}</ref> the idea that ] originated elsewhere in the ] and came to Earth. The modern version of panspermia holds that life may have been distributed to Earth by ], ], ]<ref name="cometary panspermia">{{cite journal |last=Wickramasinghe |first=Chandra |author-link=Chandra Wickramasinghe |title=Bacterial morphologies supporting cometary panspermia: a reappraisal |journal=] |year=2011 |volume=10 |issue=1 |pages=25–30 |doi=10.1017/S1473550410000157 |bibcode=2011IJAsB..10...25W |citeseerx=10.1.1.368.4449 |s2cid=7262449}}</ref> and ].<ref>Rampelotto, P. H. (2010). "Panspermia: A promising field of research". In: Astrobiology Science Conference. Abs 5224.</ref> It does not attempt to explain how life originated in itself, but shifts the origin of life on Earth to another heavenly body. The advantage is that life is not required to have formed on each planet it occurs on, but rather in a more limited set of locations, or even a single location, and then spread about the ] to other star systems via cometary or meteorite impact.<ref name="NYT-20160912">{{cite news |last=Chang |first=Kenneth |title=Visions of Life on Mars in Earth's Depths |url=https://www.nytimes.com/2016/09/13/science/south-african-mine-life-on-mars.html |date=12 September 2016 |work=] |access-date=12 September 2016 |url-status=live |archive-url=https://web.archive.org/web/20160912225220/http://www.nytimes.com/2016/09/13/science/south-african-mine-life-on-mars.html |archive-date=12 September 2016}}</ref> Panspermia did not get much scientific support because it was largely used to deflect the need of an answer instead of explaining observable phenomena. Although the interest in panspermia grew when the study of meteorites found traces of organic materials in them, it is currently accepted that life started locally on Earth.<ref>{{cite book |last= Aguilera Mochón|first= Juan Antonio|date= 2016|title= El origen de la vida en la tierra|trans-title= The origin of life on Earth|url= |language= Spanish|location= Spain|publisher= RBA|isbn=978-84-473-8386-3}}</ref> | |||
=== "A warm little pond": primordial soup === | |||
The first experimental evidence against spontaneous generation came in 1668 when ] showed that no ]s appeared in meat when flies were prevented from laying eggs. It was gradually shown that, at least in the case of all the higher and readily visible organisms, the previous sentiment regarding spontaneous generation was false. The alternative seemed to be ]: that every living thing came from a pre-existing living thing (''omne vivum ex ovo'', Latin for "every living thing from an egg"). | |||
{{Main|Primordial soup}} | |||
In 1768, ] demonstrated that ] were present in the air, and could be killed by boiling. In 1861, ] performed a series of experiments that demonstrated that organisms such as bacteria and fungi do not spontaneously appear in sterile, nutrient-rich media, but could only appear by invasion from without. | |||
The idea that life originated from non-living matter in slow stages appeared in ]'s 1864–1867 book ''Principles of Biology'', and in ]'s 1879 paper "On spontaneous generation and evolution". On 1 February 1871 ] wrote about these publications to ], and set out his own speculation, suggesting that the original spark of life may have begun in a "warm little pond, with all sorts of ] and phosphoric ], light, heat, electricity, {{sic|hide=y|&c.}}, present, that a {{sic|hide=y|proteine}} compound was chemically formed ready to undergo still more complex changes." Darwin went on to explain that "at the present day such matter would be instantly devoured or absorbed, which would not have been the case before living creatures were formed."<ref name="Darwin DCP-LETT-7471">{{cite web |title=Letter no. 7471, Charles Darwin to Joseph Dalton Hooker, 1 February (1871) |website=Darwin Correspondence Project |url=https://www.darwinproject.ac.uk/letter/DCP-LETT-7471.xml |access-date=7 July 2020 |archive-date=7 July 2020 |archive-url=https://web.archive.org/web/20200707094423/https://www.darwinproject.ac.uk/letter/DCP-LETT-7471.xml |url-status=live }}</ref><ref>{{cite web |title=Origin and Evolution of Life on a Frozen Earth |last=Priscu |first=John C. |author-link=John Charles Priscu |publisher=] |location=Arlington County, Virginia |url=https://www.nsf.gov/news/special_reports/darwin/textonly/polar_essay1.jsp |access-date=1 March 2014 |url-status=live |archive-url=https://web.archive.org/web/20131218070241/http://www.nsf.gov/news/special_reports/darwin/textonly/polar_essay1.jsp |archive-date=18 December 2013}}</ref><ref name="BBC-20201111">{{cite news |last=Marshall |first=Michael |title=Charles Darwin's hunch about early life was probably right |url=https://www.bbc.com/future/article/20201110-charles-darwin-early-life-theory |date=11 November 2020 |work=] |access-date=11 November 2020 |archive-date=11 November 2020 |archive-url=https://web.archive.org/web/20201111015900/https://www.bbc.com/future/article/20201110-charles-darwin-early-life-theory |url-status=live }}</ref> | |||
The belief that self-ordering by spontaneous generation was impossible begged for an alternative. By the middle of the 19th century, the theory of biogenesis had accumulated so much evidential support, due to the work of Pasteur and others, that the alternative theory of spontaneous generation had been effectively disproven. ], a pioneer in ], suggested that earlier theories such as spontaneous generation were based upon an explanation that life was continuously created as a result of chance events.<ref name="Bernal 1967">{{harvnb|Bernal|1967}}</ref> | |||
] in 1924 and ] in 1929 proposed that the first molecules constituting the earliest cells slowly self-organized from a ], and this theory is called the ''']'''.<ref name="Bahadur1973">{{cite journal |last=Bahadur |first=Krishna |year=1973 |title=Photochemical Formation of Self–sustaining Coacervates |journal=] |volume=39 |issue=4 |pages=455–467 |doi=10.1016/S0044-4057(75)80076-1 |pmid=1242552 |url=http://www.dli.gov.in/rawdataupload/upload/insa/INSA_1/20005b73_455.pdf |archive-url=https://web.archive.org/web/20131019172800/http://www.dli.gov.in/rawdataupload/upload/insa/INSA_1/20005b73_455.pdf |archive-date=19 October 2013}}</ref><ref name="Bahadur1975">{{cite journal |last=Bahadur |first=Krishna |year=1975 |title=Photochemical Formation of Self-Sustaining Coacervates |journal=] |url=https://www.sciencedirect.com/science/article/abs/pii/S0044405775800761 |volume=130 |issue=3 |pages=211–218 |doi=10.1016/S0044-4057(75)80076-1 |oclc=641018092 |pmid=1242552 |access-date=13 December 2022 |archive-date=13 December 2022 |archive-url=https://web.archive.org/web/20221213115635/https://www.sciencedirect.com/science/article/abs/pii/S0044405775800761 |url-status=live }}</ref> Haldane suggested that the Earth's prebiotic oceans consisted of a "hot dilute soup" in which organic compounds could have formed.<ref name="Bernal 1967"/><ref>{{harvnb|Bryson|2004|pp=300–302}}</ref> ] showed that such mechanisms could form most of the necessary molecules for life from inorganic precursors.<ref>{{harvnb|Bernal|1951}}</ref> In 1967, he suggested three "stages": the origin of biological ]s; the origin of biological ]s; and the evolution from molecules to cells.<ref>{{cite journal |last=Martin |first=William F. |author-link=William F. Martin |date=January 2003 |title=On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells |journal=Phil. Trans. R. Soc. Lond. A |volume=358 |issue=1429 |pages=59–83 |doi=10.1098/rstb.2002.1183 |pmid=12594918 |pmc=1693102}}</ref><ref>{{cite journal |last=Bernal |first=John Desmond |author-link=John Desmond Bernal |date=September 1949 |title=The Physical Basis of Life |journal=] |volume=62 |issue=9 |pages=537–558 |bibcode=1949PPSA...62..537B |doi=10.1088/0370-1298/62/9/301 |s2cid=83754271}}</ref> | |||
=== The origin of the terms ''biogenesis'' and ''abiogenesis'' === | |||
{{Main|Biogenesis}} | |||
The term biogenesis is usually credited to either ] or to ].<ref name=eohtBiogenesis>{{cite encyclopedia |encyclopedia=Hmolpedia |title=Biogenesis |url=http://www.eoht.info/page/Biogenesis |accessdate=2014-05-19 |publisher=WikiFoundry, Inc. |location=Ancaster, Ontario, Canada}}</ref> Bastian used the term (around 1869) in an unpublished exchange with ] to mean ''life-origination or commencement''. In 1870, Huxley, as new president of the ], delivered an address entitled ''Biogenesis and Abiogenesis''.<ref name="Huxley 1968">{{harvnb|Huxley|1968}}</ref> In it he introduced the term ''biogenesis'' (with an opposite meaning to Bastian) and also introduced the term ''abiogenesis'': | |||
=== Miller–Urey experiment === | |||
:And thus the hypothesis that living matter always arises by the agency of pre-existing living matter, took definite shape; and had, henceforward, a right to be considered and a claim to be refuted, in each particular case, before the production of living matter in any other way could be admitted by careful reasoners. It will be necessary for me to refer to this hypothesis so frequently, that, to save circumlocution, I shall call it the hypothesis of ''Biogenesis''; and I shall term the contrary doctrine–that living matter may be produced by not living matter–the hypothesis of ''Abiogenesis''.<ref name="Huxley 1968" /> | |||
{{Main|Miller–Urey experiment}} | |||
Subsequently, in the preface to Bastian's 1871 book, ''The Modes of Origin of Lowest Organisms'',<ref>{{harvnb|Bastian|1871}}</ref> the author refers to the possible confusion with Huxley's usage and he explicitly renounced his own meaning: | |||
In 1952, ] and ] carried out a chemical experiment to demonstrate how organic molecules could have formed spontaneously from inorganic precursors under ] like those posited by the Oparin–Haldane hypothesis. It used a highly ] (lacking oxygen) mixture of gases—], ], and ], as well as ]—to form simple organic monomers such as ]s.<ref>{{cite journal |last=Miller |first=Stanley L. |author-link=Stanley Miller |date=15 May 1953 |title=A Production of Amino Acids Under Possible Primitive Earth Conditions |journal=] |volume=117 |issue=3046 |pages=528–529 |bibcode=1953Sci...117..528M |doi=10.1126/science.117.3046.528 |pmid=13056598}}</ref><ref name="pmid21422282">{{cite journal |last1=Parker |first1=Eric T. |last2=Cleaves |first2=Henderson J. |last3=Dworkin |first3=Jason P. |last4=Glavin |first4=Daniel P. |last5=Callahan |first5=Michael |last6=Aubrey |first6=Andrew |last7=Lazcano |first7=Antonio |author7-link=Antonio Lazcano |last8=Bada |first8=Jeffrey L. |author8-link=Jeffrey L. Bada |display-authors=3 |date=5 April 2011 |title=Primordial synthesis of amines and amino acids in a 1958 Miller H<sub>2</sub>S-rich spark discharge experiment |journal=] |volume=108 |issue=14 |pages=5526–5531 |bibcode=2011PNAS..108.5526P |doi=10.1073/pnas.1019191108 |pmc=3078417 |pmid=21422282 |doi-access=free}}</ref> Bernal said of the Miller–Urey experiment that "it is not enough to explain the formation of such molecules, what is necessary, is a physical-chemical explanation of the origins of these molecules that suggests the presence of suitable sources and sinks for free energy."<ref>{{harvnb|Bernal|1967|p=143}}</ref> However, current scientific consensus describes the primitive atmosphere as weakly reducing or neutral,<ref name="Cleaves 2008">{{cite journal |last1=Cleaves |first1=H. James |last2=Chalmers |first2=John H. |last3=Lazcano |first3=Antonio |author3-link=Antonio Lazcano |last4=Miller |first4=Stanley L. |last5=Bada |first5=Jeffrey L. |author5-link=Jeffrey L. Bada |display-authors=3 |date=April 2008 |title=A Reassessment of Prebiotic Organic Synthesis in Neutral Planetary Atmospheres |journal=] |volume=38 |issue=2 |pages=105–115 |bibcode=2008OLEB...38..105C |doi=10.1007/s11084-007-9120-3 |pmid=18204914 |s2cid=7731172}}</ref><ref name="Chyba 2005">{{cite journal |last=Chyba |first=Christopher F. |author-link=Christopher Chyba |s2cid=93303848 |date=13 May 2005 |title=Rethinking Earth's Early Atmosphere |journal=] |volume=308 |issue=5724 |pages=962–963 |doi=10.1126/science.1113157 |pmid=15890865}}</ref> diminishing the amount and variety of amino acids that could be produced. The addition of ] and ] minerals, present in early oceans, however, produces a diverse array of amino acids.<ref name="Cleaves 2008"/> Later work has focused on two other potential reducing environments: ] and deep-sea hydrothermal vents.<ref>{{harvnb|Barton|Briggs|Eisen|Goldstein|2007|pp=93–95}}</ref><ref>{{harvnb|Bada|Lazcano|2009|pp=56–57}}</ref><ref name="Bada 2003">{{cite journal |last1=Bada |first1=Jeffrey L. |author1-link=Jeffrey L. Bada |last2=Lazcano |first2=Antonio |author2-link=Antonio Lazcano |date=2 May 2003 |url=http://astrobiology.berkeley.edu/PDFs_articles/Bada_Science2003.pdf |title=Prebiotic Soup – Revisiting the Miller Experiment |journal=] |volume=300 |issue=5620 |pages=745–746 |doi=10.1126/science.1085145 |pmid=12730584 |s2cid=93020326 |access-date=2015-06-13 |url-status=live |archive-url=https://web.archive.org/web/20160304222002/http://astrobiology.berkeley.edu/PDFs_articles/Bada_Science2003.pdf |archive-date=4 March 2016}}</ref> | |||
:A word of explanation seems necessary with regard to the introduction of the new term ''Archebiosis''. I had originally, in unpublished writings, adopted the word ''Biogenesis'' to express the same meaning—viz., life-origination or commencement. But in the mean time the word ''Biogenesis'' has been made use of, quite independently, by a distinguished biologist , who wished to make it bear a totally different meaning. He also introduced the word ''Abiogenesis''. I have been informed, however, on the best authority, that neither of these words can—with any regard to the language from which they are derived—be supposed to bear the meanings which have of late been publicly assigned to them. Wishing to avoid all needless confusion, I therefore renounced the use of the word ''Biogenesis'', and being, for the reason just given, unable to adopt the other term, I was compelled to introduce a new word, in order to designate the process by which living matter is supposed to come into being, independently of pre-existing living matter.<ref>{{harvnb|Bastian|1871|p=}}</ref> | |||
<!-- Please do not extend this section; it is a summary of the linked "main" article. Put your materials there, and THEN if absolutely necessary adjust this summary to match, very briefly. --> | |||
== Producing a habitable Earth == | |||
] in 1879]] | |||
Pasteur remarked, about a finding of his in 1864 which he considered definitive, "Never will the doctrine of spontaneous generation recover from the mortal blow struck by this simple experiment."<ref>{{harvnb|Oparin|1953|p=196}}</ref><ref name="Tyndall Fragments2">{{harvnb|Tyndall|1905|loc=IV, XII (1876), XIII (1878)}}</ref> One alternative was that life's origins on Earth had come from somewhere else in the Universe. Periodically resurrected (see Panspermia, above) Bernal said that this approach "is equivalent in the last resort to asserting the operation of metaphysical, spiritual entities... it turns on the argument of creation by design by a creator or demiurge."<ref>{{harvnb|Bernal|1967|p=139}}</ref> Such a theory, Bernal said was unscientific and a number of scientists defined life as a result of an inner '']'', which in the late 19th century was championed by ]. | |||
{{Abiogenesis timeline}} | |||
The concept of ] proposed by ] put an end to these metaphysical theologies. In a letter to ] on 1 February 1871,<ref>{{cite web |url=https://www.nsf.gov/news/special_reports/darwin/textonly/polar_essay1.jsp |title=Origin and Evolution of Life on a Frozen Earth |last=Priscu |first=John C |authorlink=John Charles Priscu |publisher=] |location=Arlington County, VA |accessdate=2014-03-01}}</ref> Darwin discussed the suggestion that the original spark of life may have begun in a "warm little pond, with all sorts of ammonia and phosphoric salts, light, heat, electricity, {{sic|hide=y|&c.}}, present, that a {{sic|hide=y|]e}} compound was chemically formed ready to undergo still more complex changes." He went on to explain that "at the present day such matter would be instantly devoured or absorbed, which would not have been the case before living creatures were formed." He had written to Hooker in 1863 stating that "It is mere rubbish, thinking at present of the origin of life; one might as well think of the origin of matter.". In '']'' he had referred to life having been "created", by which he "really meant 'appeared' by some wholly unknown process", but had soon regretted using the old-testament term "creation".<ref>{{harvnb|Darwin|1887|p=}}: "It is often said that all the conditions for the first production of a living organism are now present, which could ever have been present. But if (and oh! what a big if!) we could conceive in some warm little pond, with all sorts of ammonia and phosphoric salts, light, heat, electricity, {{sic|hide=y|&c.}}, present, that a {{sic|hide=y|]e}} compound was chemically formed ready to undergo still more complex changes, at the present day such matter would be instantly devoured or absorbed, which would not have been the case before living creatures were formed." — ], 1 February 1871</ref> | |||
=== |
=== Evolutionary history === | ||
{{anchor | Haldane and Oparin: The Primordial Soup Theory}}<!--This section is linked from ]--> | |||
] (right) at the laboratory]] | |||
{{further2|]}} | |||
No new notable research or theory on the subject appeared until 1924, when ] reasoned that atmospheric oxygen prevents the synthesis of certain organic compounds that are necessary building blocks for the evolution of life. In his book ''The Origin of Life'',<ref>{{harvnb|Bernal|1967|loc=}}</ref><ref>{{harvnb|Oparin|1953}}</ref> Oparin proposed that the "spontaneous generation of life" that had been attacked by Louis Pasteur did in fact occur once, but was now impossible because the conditions found on the early Earth had changed, and preexisting organisms would immediately consume any spontaneously generated organism. Oparin argued that a "primeval soup" of organic molecules could be created in an oxygenless atmosphere through the action of ]. These would combine in ever more complex ways until they formed ] droplets. These droplets would "]" by fusion with other droplets, and "]" through fission into daughter droplets, and so have a primitive ] in which factors that promote "cell integrity" survive, and those that do not become extinct. Many modern theories of the origin of life still take Oparin's ideas as a starting point. | |||
==== Early universe with first stars ==== | |||
] has summarized the "primordial soup" theory of Oparin and ] in its "mature form" as follows:<ref>{{harvnb|Shapiro|1987|p=110}}</ref> | |||
# The early Earth had a chemically ]. | |||
# This atmosphere, exposed to ] in various forms, produced simple organic compounds ("]s"). | |||
# These compounds accumulated in a "soup" that may have concentrated at various locations (shorelines, ] etc.). | |||
# By further transformation, more complex organic ]s—and ultimately life—developed in the soup. | |||
{{See also|Chronology of the universe}} | |||
About this time, Haldane suggested that the Earth's prebiotic oceans—different from their modern counterparts—would have formed a "hot dilute soup" in which organic compounds could have formed. Bernal called this idea ''biopoiesis'' or ''biopoesis'', the process of living matter evolving from self-replicating but nonliving molecules,<ref name="Bernal 1967" /><ref>{{harvnb|Bryson|2004|pp=300–302}}</ref> and proposed that biopoiesis passes through a number of intermediate stages. | |||
Soon after the ], which occurred roughly 14 Gya, the only chemical elements present in the universe were ], ], and ], the three lightest atoms in the periodic table. These elements gradually accreted and began orbiting in disks of gas and dust. Gravitational accretion of material at the hot and dense centers of these ]s formed stars by the fusion of hydrogen.<ref>{{Cite journal |last1=Madau |first1=Piero |last2=Dickinson |first2=Mark |date=2014-08-18 |title=Cosmic Star-Formation History |url=https://www.annualreviews.org/doi/10.1146/annurev-astro-081811-125615 |journal=Annual Review of Astronomy and Astrophysics |volume=52 |issue=1 |pages=415–486 |doi=10.1146/annurev-astro-081811-125615 |arxiv=1403.0007 |bibcode=2014ARA&A..52..415M |s2cid=658354 |access-date=8 December 2023 |archive-date=1 July 2022 |archive-url=https://web.archive.org/web/20220701214618/https://www.annualreviews.org/doi/10.1146/annurev-astro-081811-125615 |url-status=live }}</ref> Early stars were massive and short-lived, producing all the heavier elements through ]. Element formation through stellar nucleosynthesis proceeds to its most stable element Iron-]. Heavier elements were formed during supernovae at the end of a stars lifecycle. ], currently the ] in the universe (after hydrogen, helium, and ]), was formed mainly in ], particularly those bigger than twice the mass of the sun.<ref name="NA-20200706">{{cite journal |last=Marigo |first=Paola |display-authors=|date=6 July 2020 |title=Carbon star formation as seen through the non-monotonic initial–final mass relation |url=https://www.nature.com/articles/s41550-020-1132-1 |url-status=live |journal=] |volume=152 |issue=11 |pages=1102–1110 |arxiv=2007.04163 |bibcode=2020NatAs...4.1102M |doi=10.1038/s41550-020-1132-1 |s2cid=220403402 |archive-url=https://web.archive.org/web/20230216160258/https://www.nature.com/articles/s41550-020-1132-1 |archive-date=16 February 2023 |access-date=7 July 2020}}</ref> As these stars reached the end of their ], they ejected these heavier elements, among them carbon and oxygen, throughout the universe. These heavier elements allowed for the formation of new objects, including rocky planets and other bodies.<ref>{{cite web |title=WMAP- Life in the Universe |url=https://wmap.gsfc.nasa.gov/universe/uni_life.html |url-status=live |archive-url=https://web.archive.org/web/20230129215644/https://wmap.gsfc.nasa.gov/universe/uni_life.html |archive-date=29 January 2023 |access-date=27 September 2019}}</ref> According to the ], the formation and evolution of the ] began 4.6 Gya with the ] of a small part of a giant ]. Most of the collapsing mass collected in the center, forming the ], while the rest flattened into a ] out of which the ]s, ], ]s, and other small Solar System bodies formed.<ref>{{cite web |title=Formation of Solar Systems: Solar Nebular Theory |url=http://www.astro.umass.edu/~myun/teaching/a100_old/solarnebulartheory.htm |url-status=live |archive-url=https://web.archive.org/web/20190927152503/http://www.astro.umass.edu/~myun/teaching/a100_old/solarnebulartheory.htm |archive-date=27 September 2019 |access-date=27 September 2019 |publisher=]}}</ref> | |||
One of the most important pieces of experimental support for the "soup" theory came in 1952. ] and ], performed an experiment that demonstrated how organic molecules could have spontaneously formed from inorganic precursors, under conditions like those posited by the Oparin-Haldane Hypothesis. The now-famous ] used a highly reducing mixture of gases—methane, ammonia and hydrogen—to form basic organic monomers, such as amino acids.<ref>{{cite journal |last=Miller |first=Stanley L. |authorlink=Stanley Miller |date=15 May 1953 |title=A Production of Amino Acids Under Possible Primitive Earth Conditions |journal=] |location=Washington, D.C. |publisher=American Association for the Advancement of Science |volume=117 |issue=3046 |pages=528–529 |bibcode=1953Sci...117..528M |doi=10.1126/science.117.3046.528 |issn=0036-8075 |pmid=13056598}}</ref> In the Miller–Urey experiment, a mixture of water, hydrogen, methane, and ammonia was cycled through an apparatus that delivered electrical sparks to the mixture. After one week, it was found that about 10% to 15% of the carbon in the system was now in the form of a ] of organic compounds, including amino acids, which are the building blocks of ]s. This provided direct experimental support for the second point of the "soup" theory, and it is around the remaining two points of the theory that much of the debate now centers. | |||
==== Emergence of Earth ==== | |||
Bernal shows that based upon this and subsequent work there is no difficulty in principle in forming most of the molecules we recognise as the basic molecules of life from their inorganic precursors. The underlying hypothesis held by Oparin, Haldane, Bernal, Miller and Urey, for instance, was that multiple conditions on the primeval Earth favored chemical reactions that synthesized the same set of complex organic compounds from such simple precursors. A 2011 reanalysis of the saved vials containing the original extracts that resulted from the Miller and Urey experiments, using current and more advanced analytical equipment and technology, has uncovered more biochemicals than originally discovered in the 1950s. One of the more important findings was 23 amino acids, far more than the five originally found.<ref name="pmid21422282">{{cite journal |last1=Parker |first1=Eric T. |last2=Cleaves |first2=Henderson J. |last3=Dworkin |first3=Jason P. |last4=Glavin |first4=Daniel P. |last5=Callahan |first5=Michael |last6=Aubrey |first6=Andrew |last7=Lazcano |first7=Antonio |last8=Bada |first8=Jeffrey L. |display-authors=3 |date=5 April 2011 |title=Primordial synthesis of amines and amino acids in a 1958 Miller H<sub>2</sub>S-rich spark discharge experiment |url=http://www.pnas.org/content/108/14/5526.full.pdf |format=PDF |journal=Proc. Natl. Acad. Sci. U.S.A. |location=Washington, D.C. |publisher=National Academy of Sciences |volume=108 |issue=14 |pages=5526–5531 |bibcode=2011PNAS..108.5526P |doi=10.1073/pnas.1019191108 |issn=0027-8424 |pmc=3078417 |pmid=21422282 |accessdate=2015-06-08}}</ref> However, Bernal said that "it is not enough to explain the formation of such molecules, what is necessary," he says, "is a physical-chemical explanation of the origins of these molecules that suggests the presence of suitable sources and sinks for free energy."<ref>{{harvnb|Bernal|1967|p=143}}</ref> | |||
{{See also|Geological history of Earth|Circumstellar habitable zone|Prebiotic atmosphere}} | |||
=== Proteinoid microspheres === | |||
{{Main|Proteinoid}} | |||
In trying to uncover the intermediate stages of abiogenesis mentioned by Bernal, ] in the 1950s and 1960s studied the spontaneous formation of ] structures under conditions that might plausibly have existed early in Earth's history. He demonstrated that amino acids could spontaneously form small chains called peptides. In one of his experiments, he allowed amino acids to dry out as if puddled in a warm, dry spot in prebiotic conditions. He found that, as they dried, the amino acids formed long, often cross-linked, thread-like, submicroscopic ] molecules now named "]."<ref name="foxexp">{{cite web |url=http://nitro.biosci.arizona.edu/courses/EEB105/lectures/Origins_of_Life/origins.html |title=Part 4: Experimental studies of the origins of life |last=Walsh |first=J. Bruce |year=1995 |work=Origins of life |publisher=] |location=Tucson, AZ |type=Lecture notes |archiveurl=https://web.archive.org/web/20080113152408/http://nitro.biosci.arizona.edu/courses/EEB105/lectures/Origins_of_Life/origins.html |archivedate=2008-01-13 |accessdate=2015-06-08}}</ref> | |||
The age of the ] is 4.54 Gya as found by radiometric dating of ] in ] meteorites, the oldest material in the Solar System.<ref name="USGS1997">{{cite web |date=9 July 2007 |title=Age of the Earth |url=https://pubs.usgs.gov/gip/geotime/age.html |url-status=live |archive-url=https://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html |archive-date=23 December 2005 |access-date=10 January 2006 |publisher=]}}</ref><ref>{{harvnb|Dalrymple|2001|pp=205–221}}</ref> Earth, during the ] eon (from its formation until 4.031 Gya,) was at first inhospitable to any living organisms. During its formation, the Earth lost a significant part of its initial mass, and consequentially lacked the ] to hold molecular hydrogen and the bulk of the original inert gases.<ref>{{harvnb|Fesenkov|1959|p=9}}</ref> Soon after initial accretion of Earth at 4.48 Ga, its collision with ], a hypothesised impactor, is thought to have created the ejected debris that would eventually form the Moon.<ref>{{Cite journal |last1=Bottke |first1=W. F. |last2=Vokrouhlický |first2=D. |last3=Marchi |first3=S. |last4=Swindle |first4=T. |last5=Scott |first5=E. R. D. |last6=Weirich |first6=J. R. |last7=Levison |first7=H. |date=2015-04-17 |title=Dating the Moon-forming impact event with asteroidal meteorites |journal=Science |volume=348 |issue=6232 |pages=321–323 |doi=10.1126/science.aaa0602 |bibcode=2015Sci...348..321B |s2cid=206632612 |doi-access=free |pmid=25883354 }}</ref> This impact would have removed the Earth's primary atmosphere, leaving behind clouds of viscous silicates and carbon dioxide. This unstable atmosphere was short-lived and condensed shortly after to form the bulk silicate Earth, leaving behind an atmosphere largely consisting of water vapor, ], and ], with smaller amounts of ], hydrogen, and ] compounds.<ref>{{cite journal |last=Kasting |first=James F. |author-link=James Kasting |date=12 February 1993 |title=Earth's Early Atmosphere |url=http://wwwdca.iag.usp.br/www/material/fornaro/ACA410/Kasting%201993_EarthEarlyAtmos.pdf |journal=] |volume=259 |issue=5097 |pages=920–926 |bibcode=1993Sci...259..920K |doi=10.1126/science.11536547 |pmid=11536547 |s2cid=21134564 |archive-url=https://web.archive.org/web/20151010074651/http://wwwdca.iag.usp.br/www/material/fornaro/ACA410/Kasting%201993_EarthEarlyAtmos.pdf |archive-date=10 October 2015 |access-date=2015-07-28}}</ref><ref name="Follmann2009">{{cite journal |last1=Follmann |first1=Hartmut |last2=Brownson |first2=Carol |date=November 2009 |title=Darwin's warm little pond revisited: from molecules to the origin of life |journal=] |volume=96 |issue=11 |pages=1265–1292 |bibcode=2009NW.....96.1265F |doi=10.1007/s00114-009-0602-1 |pmid=19760276 |s2cid=23259886}}</ref> The solution of carbon dioxide in water is thought to have made the seas slightly ]ic, with a ] of about 5.5.<ref>{{cite journal |last=Morse |first=John |date=September 1998 |title=Hadean Ocean Carbonate Geochemistry |journal=Aquatic Geochemistry |volume=4 |issue=3/4 |pages=301–319 |bibcode=1998MinM...62.1027M |doi=10.1023/A:1009632230875 |s2cid=129616933}}</ref> | |||
In another experiment using a similar method to set suitable conditions for life to form, Fox collected volcanic material from a ] in ]. He discovered that the temperature was over {{convert|100|C}} just {{convert|4|in}} beneath the surface of the cinder cone, and suggested that this might have been the environment in which life was created—molecules could have formed and then been washed through the loose volcanic ash and into the sea. He placed lumps of lava over amino acids derived from methane, ammonia and water, sterilized all materials, and baked the lava over the amino acids for a few hours in a glass oven. A brown, sticky substance formed over the surface and when the lava was drenched in sterilized water a thick, brown liquid leached out. It turned out that the amino acids had combined to form ]s, and the proteinoids had combined to form small globules that Fox called "microspheres." His proteinoids were not cells, although they formed clumps and chains reminiscent of ], but they contained no functional ]s or any encoded information. Based upon such experiments, ] stated in December 1967 that "laboratories will be creating a living cell within ten years," a remark that reflected the typical contemporary levels of innocence of the complexity of cell structures.<ref>{{harvnb|Woodward|1969|p=}}</ref> | |||
Condensation to form liquid ] is theorised to have occurred as early as the Moon-forming impact.<ref>{{Cite journal |last1=Sleep |first1=Norman H. |last2=Zahnle |first2=Kevin J. |last3=Lupu |first3=Roxana E. |date=2014-09-13 |title=Terrestrial aftermath of the Moon-forming impact |journal=Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences |volume=372 |issue=2024 |pages=20130172 |doi=10.1098/rsta.2013.0172 |pmid=25114303 |bibcode=2014RSPTA.37230172S |s2cid=6902632 |doi-access=free }}</ref><ref>{{Cite journal |last1=Morse |first1=John W. |last2=Mackenzie |first2=Fred T. |date=1998 |title= |url=http://link.springer.com/10.1023/A:1009632230875 |journal=Aquatic Geochemistry |volume=4 |issue=3/4 |pages=301–319 |doi=10.1023/A:1009632230875 |s2cid=129616933 |access-date=8 December 2023 |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131154932/https://link.springer.com/article/10.1023/A:1009632230875 |url-status=live }}</ref> This scenario has found support from the dating of 4.404 Gya ] crystals with high ] values from metamorphosed ] of ] in Western Australia.<ref>{{Cite journal |last1=Crowley |first1=James L. |last2=Myers |first2=John S. |last3=Sylvester |first3=Paul J |last4=Cox |first4=Richard A. |date=May 2005 |title=Detrital Zircon from the Jack Hills and Mount Narryer, Western Australia: Evidence for Diverse >4.0 Ga Source Rocks |url=https://www.journals.uchicago.edu/doi/10.1086/428804 |journal=The Journal of Geology |volume=113 |issue=3 |pages=239–263 |doi=10.1086/428804 |bibcode=2005JG....113..239C |s2cid=140715676 |access-date=8 December 2023 |archive-date=16 December 2023 |archive-url=https://web.archive.org/web/20231216004103/https://www.journals.uchicago.edu/doi/10.1086/428804 |url-status=live }}</ref><ref name="Wilde 2001">{{cite journal |last1=Wilde |first1=Simon A. |last2=Valley |first2=John W. |last3=Peck |first3=William H. |last4=Graham |first4=Colin M. |date=11 January 2001 |title=Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago |url=http://www.geology.wisc.edu/~valley/zircons/Wilde2001Nature.pdf |url-status=live |journal=] |volume=409 |issue=6817 |pages=175–178 |bibcode=2001Natur.409..175W |doi=10.1038/35051550 |pmid=11196637 |s2cid=4319774 |archive-url=https://web.archive.org/web/20150605132344/http://www.geology.wisc.edu/~valley/zircons/Wilde2001Nature.pdf |archive-date=5 June 2015 |access-date=3 June 2015}}</ref> The Hadean atmosphere has been characterized as a "gigantic, productive outdoor chemical laboratory," similar to volcanic gases today which still support some abiotic chemistry. Despite the likely increased volcanism from early plate tectonics, the Earth may have been a predominantly water world between 4.4 and 4.3 Gya. It is debated whether or not crust was exposed above this ocean due to uncertainties of what early plate tectonics looked like. For early life to have developed, it is generally thought that a land setting is required, so this question is essential to determining when in Earth's history life evolved.<ref>{{Cite journal |last=Korenaga |first=Jun |date=December 2008 |title=Plate tectonics, flood basalts and the evolution of Earth's oceans |journal=Terra Nova |volume=20 |issue=6 |pages=419–439 |doi=10.1111/j.1365-3121.2008.00843.x |bibcode=2008TeNov..20..419K |s2cid=36766331 |doi-access=free }}</ref> Immediately after the Moon-forming impact, Earth likely had little if any continental crust, a turbulent atmosphere, and a ] subject to intense ] light from a ]. It was also affected by ], and continued asteroid and ] impacts.<ref name="rise.2006">{{cite journal |last1=Rosing |first1=Minik T. |last2=Bird |first2=Dennis K. |last3=Sleep |first3=Norman H. |last4=Glassley |first4=William |last5=Albarède |first5=Francis |author-link5=Francis Albarède |display-authors=3 |date=22 March 2006 |title=The rise of continents – An essay on the geologic consequences of photosynthesis |url=https://www.researchgate.net/publication/223066196 |url-status=live |journal=] |volume=232 |issue=2–4 |pages=99–113 |bibcode=2006PPP...232...99R |doi=10.1016/j.palaeo.2006.01.007 |archive-url=https://web.archive.org/web/20150714073656/http://www.researchgate.net/profile/Francis_Albarede/publication/223066196_The_rise_of_continentsAn_essay_on_the_geologic_consequences_of_photosynthesis/links/00b7d51766c442f58b000000.pdf |archive-date=14 July 2015 |access-date=2015-06-08}}</ref> Despite all this, niche environments likely existed conducive to life on Earth in the Late-Hadean to Early-Archaean. | |||
== Current models == | |||
The ] hypothesis posits that a period of intense impact occurred at 4.1 to 3.8 Gya during the Hadean and early ] eons.<ref>{{Cite journal |last1=Tera |first1=Fouad |last2=Papanastassiou |first2=D.A. |last3=Wasserburg |first3=G.J. |date=April 1974 |title=Isotopic evidence for a terminal lunar cataclysm |journal=Earth and Planetary Science Letters |volume=22 |issue=1 |pages=1–21 |doi=10.1016/0012-821x(74)90059-4 |bibcode=1974E&PSL..22....1T |url=https://www.sciencedirect.com/science/article/abs/pii/0012821X74900594 |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131154923/https://www.sciencedirect.com/science/article/abs/pii/0012821X74900594?via%3Dihub |url-status=live }}</ref><ref>{{Cite journal |last=Stoffler |first=D. |date=2006-01-01 |title=Cratering History and Lunar Chronology |journal=Reviews in Mineralogy and Geochemistry |volume=60 |issue=1 |pages=519–596 |doi=10.2138/rmg.2006.60.05 |bibcode=2006RvMG...60..519S |url=https://pubs.geoscienceworld.org/msa/rimg/article-abstract/60/1/519/140783/Cratering-History-and-Lunar-Chronology?redirectedFrom=fulltext |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131154819/https://pubs.geoscienceworld.org/msa/rimg/article-abstract/60/1/519/140783/Cratering-History-and-Lunar-Chronology?redirectedFrom=fulltext |url-status=live }}</ref> Originally it was thought that the Late Heavy Bombardment was a single cataclysmic impact event occurring at 3.9 Gya; this would have had the potential to sterilise all life on Earth by volatilising liquid oceans and blocking the Sun needed for photosynthesising primary producers, pushing back the earliest possible emergence of life to after the Late Heavy Bombardment.<ref>{{Cite journal |last1=Sleep |first1=Norman H. |last2=Zahnle |first2=Kevin J. |last3=Kasting |first3=James F. |last4=Morowitz |first4=Harold J. |date=December 1989 |title=Annihilation of ecosystems by large asteroid impacts on the early Earth |journal=Nature |volume=342 |issue=6246 |pages=139–142 |doi=10.1038/342139a0 |pmid=11536616 |bibcode=1989Natur.342..139S |s2cid=1137852 |url=https://www.nature.com/articles/342139a0 |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131154923/https://www.nature.com/articles/342139a0 |url-status=live }}</ref> However, more recent research questioned both the intensity of the Late Heavy Bombardment as well as its potential for sterilisation. Uncertainties as to whether Late Heavy Bombardment was one giant impact or a period of greater impact rates greatly changed the implication of its destructive power.<ref>{{Cite journal |last1=Fassett |first1=Caleb I. |last2=Minton |first2=David A. |date=2013-06-23 |title=Impact bombardment of the terrestrial planets and the early history of the Solar System |journal=Nature Geoscience |volume=6 |issue=7 |pages=520–524 |doi=10.1038/ngeo1841 |bibcode=2013NatGe...6..520F |url=https://www.nature.com/articles/ngeo1841 |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131154819/https://www.nature.com/articles/ngeo1841 |url-status=live }}</ref><ref>{{Cite journal |last1=Abramov |first1=Oleg |last2=Mojzsis |first2=Stephen J. |date=May 2009 |title=Microbial habitability of the Hadean Earth during the late heavy bombardment |journal=Nature |volume=459 |issue=7245 |pages=419–422 |doi=10.1038/nature08015 |pmid=19458721 |bibcode=2009Natur.459..419A |s2cid=3304147 |url=https://www.nature.com/articles/nature08015 |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131154926/https://www.nature.com/articles/nature08015 |url-status=live }}</ref> The 3.9 Ga date arose from dating of ] collected mostly near the ], biasing the age of recorded impacts.<ref>{{Cite journal |last1=Boehnke |first1=Patrick |last2=Harrison |first2=T. Mark |date=2016-09-12 |title=Illusory Late Heavy Bombardments |journal=Proceedings of the National Academy of Sciences |volume=113 |issue=39 |pages=10802–10806 |doi=10.1073/pnas.1611535113 |pmid=27621460 |pmc=5047187 |bibcode=2016PNAS..11310802B |doi-access=free }}</ref> Impact modelling of the lunar surface reveals that rather than a cataclysmic event at 3.9 Ga, multiple small-scale, short-lived periods of bombardment likely occurred.<ref>{{Cite journal |last=Zellner |first=Nicolle E. B. |date=2017-05-03 |title=Cataclysm No More: New Views on the Timing and Delivery of Lunar Impactors |journal=Origins of Life and Evolution of Biospheres |volume=47 |issue=3 |pages=261–280 |doi=10.1007/s11084-017-9536-3 |pmid=28470374 |pmc=5602003 |arxiv=1704.06694 |bibcode=2017OLEB...47..261Z }}</ref> Terrestrial data backs this idea by showing multiple periods of ejecta in the rock record both before and after the 3.9 Ga marker, suggesting that the early Earth was subject to continuous impacts that would not have had as great an impact on extinction as previously thought.<ref>{{Cite journal |last1=Lowe |first1=Donald R. |last2=Byerly |first2=Gary R. |date=2018-04-01 |title=The terrestrial record of Late Heavy Bombardment |journal=New Astronomy Reviews |volume=81 |pages=39–61 |doi=10.1016/j.newar.2018.03.002|bibcode=2018NewAR..81...39L |doi-access=free }}</ref> If the Late Heavy Bombardment was not a single cataclysmic event, the emergence of life could have taken place far before 3.9 Ga. | |||
There is still no "standard model" of the origin of life. Most currently accepted models draw at least some elements from the framework laid out by Alexander Oparin (in 1924) and J. B. S. Haldane (in 1925), who postulated the molecular or chemical evolution theory of life.<ref name="bah2">{{cite journal |last=Bahadur |first=Krishna |year=1973 |title=Photochemical Formation of Self–sustaining Coacervates |url=http://www.dli.gov.in/rawdataupload/upload/insa/INSA_1/20005b73_455.pdf |format=PDF |journal=Proceedings of the Indian National Science Academy |location=New Delhi |publisher=] |volume=39B |issue=4 |pages=455–467 |issn=0370-0046}} | |||
* {{cite journal |last=Bahadur |first=Krishna |year=1975 |title=Photochemical Formation of Self-Sustaining Coacervates |journal=] |location=Jena, Germany |publisher=Gustav Fischer Verlag |volume=130 |issue=3 |pages=211–218 |doi=10.1016/S0044-4057(75)80076-1 |oclc=641018092 |pmid=1242552}}</ref> According to them, the first molecules constituting the earliest cells "were synthesized under natural conditions by a slow process of molecular evolution, and these molecules then organized into the first molecular system with properties with biological order."<ref name="bah2" /> Oparin and Haldane suggested that the atmosphere of the early Earth may have been chemically reducing in nature, composed primarily of methane (CH<sub>4</sub>), ammonia (NH<sub>3</sub>), water (H<sub>2</sub>O), hydrogen sulfide (H<sub>2</sub>S), carbon dioxide (CO<sub>2</sub>) or carbon monoxide (CO), and ] (PO<sub>4</sub><sup>3−</sup>), with molecular oxygen (O<sub>2</sub>) and ] (O<sub>3</sub>) either rare or absent. According to later models, the atmosphere in the late Hadean period consisted largely of nitrogen (N<sub>2</sub>) and carbon dioxide, with smaller amounts of carbon monoxide, hydrogen (H<sub>2</sub>), and sulfur compounds;<ref>{{harvnb|Kasting|1993|p=922}}</ref> while it did lack molecular oxygen and ozone,<ref>{{harvnb|Kasting|1993|p=920}}</ref> it wasn't as chemically reducing as Oparin and Haldane supposed. In the atmosphere proposed by Oparin and Haldane, electrical activity can produce certain basic small molecules (monomers) of life, such as amino acids. This was demonstrated in the ] reported in 1953. | |||
If life evolved in the ocean at depths of more than ten meters, it would have been shielded both from late impacts and the then high levels of ultraviolet radiation from the sun. Geothermically heated oceanic crust could have yielded far more organic compounds through deep ]s than the ]s indicated.<ref>{{harvnb|Davies|1999|p=155}}</ref> The available energy is maximized at 100–150 °C, the temperatures at which ] bacteria and ] ] live.<ref>{{harvnb|Bock|Goode|1996}}</ref> | |||
Bernal coined the term ''biopoiesis'' in 1949 to refer to the origin of life.<ref>{{harvnb|Bernal|1951}}</ref> In 1967, he suggested that it occurred in three "stages": 1) the origin of biological monomers; 2) the origin of biological polymers; and 3) the evolution from molecules to cells. He suggested that evolution commenced between stage 1 and 2. The first stage is now fairly well understood, and the discovery of alkaline vents and the similarity with the "]" found as the basis of biological life has begun to provide evidence about the second stage.{{clarify|date=October 2015}} Bernal considered the third, the discovery of methods by which biological reactions were incorporated behind cell walls, to be the most difficult. Modern work on the self organising capacities by which ]s self-assemble, and the work on micropores in various substrates is seen as a ] towards the development of independent free-living cells, and research into this is an ongoing effort.<ref>{{cite journal |last=Bernal |first=John Desmond |authorlink=John Desmond Bernal |date=September 1949 |title=The Physical Basis of Life |journal=]. Section A |location=Bristol, UK |publisher=] |volume=62 |issue=9 |pages=537–558 |bibcode=1949PPSA...62..537B |doi=10.1088/0370-1298/62/9/301 |issn=0370-1298}}</ref><ref>{{harvnb|Kauffman|1995}}</ref> | |||
==== Earliest evidence of life ==== | |||
The chemical processes that took place on the early Earth are called ''chemical evolution''. Both ] and ] demonstrated that evolution, including replication, variation, and ], can occur in populations of molecules as well as in organisms.<ref name="Follmann2009">{{cite journal |last1=Follmann |first1=Hartmut |last2=Brownson |first2=Carol |date=November 2009 |title=Darwin's warm little pond revisited: from molecules to the origin of life |journal=] |location=Berlin |publisher=] |volume=96 |issue=11 |pages=1265–1292 |bibcode=2009NW.....96.1265F doi=10.1007/s00114-009-0602-1 |issn=0028-1042 |pmid=19760276 |doi=10.1007/s00114-009-0602-1}}</ref> Spiegelman took advantage of natural selection to synthesize the ], which had a genome with just 218 ] bases, having deconstructively evolved from a 4500 base bacterial RNA. Eigen built on Spiegelman's work and produced a similar system further degraded to just 48 or 54 nucleotides, which was the minimum required for the binding of the replication enzyme.<ref name="EIG">{{cite journal |last1=Oehlenschläger |first1=Frank |last2=Eigen |first2=Manfred |authorlink2=Manfred Eigen |date=December 1997 |title=30 Years Later – a New Approach to Sol Spiegelman's and Leslie Orgel's in vitro EVOLUTIONARY STUDIES Dedicated to Leslie Orgel on the occasion of his 70th birthday |journal=] |publisher=Kluwer Academic Publishers |volume=27 |issue=5-6 |pages=437–457 |doi=10.1023/A:1006501326129 |issn=0169-6149 |pmid=9394469}}</ref> | |||
{{main|Earliest known life forms}} | |||
Chemical evolution was followed by the initiation of ], which led to the first cells.<ref name="Follmann2009" /> No one has yet synthesized a "]" using basic components with the necessary properties of life (the so-called "]"). Without such a proof-of-principle, explanations have tended to focus on ].<ref>{{cite press release |last1=McCollom |first1=Thomas |last2=Mayhew |first2=Lisa |last3=Scott |first3=Jim |date=7 October 2014 |title=NASA awards CU-Boulder-led team $7 million to study origins, evolution of life in universe |url=http://www.colorado.edu/news/releases/2014/10/07/nasa-awards-cu-boulder-led-team-7-million-study-origins-evolution-life |location=Boulder, CO |publisher=] |accessdate=2015-06-08}}</ref> However, some researchers are working in this field, notably ] and ]. Others have argued that a "]" is more feasible. One such approach, successfully attempted by ] and others at ], involves engineering existing prokaryotic cells with progressively fewer genes, attempting to discern at which point the most minimal requirements for life were reached.<ref>{{cite journal |last1=Gibson |first1=Daniel G.|last2=Glass |first2=John I. |last3=Lartigue |first3= Carole | last4 = Noskov | first4 = V.| last5 = Chuang | first5 = R.| last6 = Algire | first6 = M.| last7 = Benders | first7 = G.| last8 = Montague | first8 = M.| last9 = Ma | first9 = L.| last10 = Moodie | first10 = M. M.| last11 = Merryman | first11 = C.| last12 = Vashee | first12 = S.| last13 = Krishnakumar | first13 = R.| last14 = Assad-Garcia | first14 = N.| last15 = Andrews-Pfannkoch | first15 = C.| last16 = Denisova | first16 = E. A.| last17 = Young | first17 = L.| last18 = Qi | first18 = Z. -Q.| last19 = Segall-Shapiro | first19 = T. H.| last20 = Calvey | first20 = C. H.| last21 = Parmar | first21 = P. P.| last22 = Hutchison Ca | first22 = C. A.| last23 = Smith | first23 = H. O.| last24 = Venter | first24 = J. C. |display-authors=3 |date=2 July 2010 |title=Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome |journal=Science |location=Washington, D.C. |publisher=American Association for the Advancement of Science |volume=329 |issue=5987 |pages=52–56 |bibcode=2010Sci...329...52G |doi=10.1126/science.1190719 |issn=0036-8075 |pmid=20488990}}</ref><ref>{{cite news |last=Swaby |first=Rachel |date=20 May 2010 |title=Scientists Create First Self-Replicating Synthetic Life |url=http://www.wired.com/2010/05/scientists-create-first-self-replicating-synthetic-life-2/ |work=] |location=New York |publisher=] |accessdate=2015-06-08}}</ref><ref>Coughlan, Andy (2016) "Smallest ever genome comes to life: Humans built it but we don't know what a third of its genes actually do" (New Scientist 2nd April 2016 No 3067)p.6</ref> | |||
The exact timing at which life emerged on Earth is unknown. Minimum age estimates are based on evidence from the ]. The earliest physical evidence of life so far found consists of ]s in the ] of Northern Quebec, in ] rocks at least 3.77 and possibly as old as 4.32 Gya. The micro-organisms could have lived within hydrothermal vent precipitates, soon after the 4.4 Gya ] during the Hadean. The microbes resembled modern hydrothermal vent bacteria, supporting the view that abiogenesis began in such an environment.<ref name="NAT-20170301">{{cite journal |last1=Dodd |first1=Matthew S. |last2=Papineau |first2=Dominic |last3=Grenne |first3=Tor |last4=Slack |first4=John F. |last5=Rittner |first5=Martin |last6=Pirajno |first6=Franco |last7=O'Neil |first7=Jonathan |last8=Little |first8=Crispin T.S. |display-authors=3 |title=Evidence for early life in Earth's oldest hydrothermal vent precipitates |journal=] |date=1 March 2017 |volume=543 |issue=7643 |pages=60–64 |doi=10.1038/nature21377 |doi-access=free |pmid=28252057 |bibcode=2017Natur.543...60D |url=http://eprints.whiterose.ac.uk/112179/ |access-date=2 March 2017 |url-status=live |archive-url=https://web.archive.org/web/20170908201821/http://eprints.whiterose.ac.uk/112179/ |archive-date=8 September 2017}}</ref> | |||
== Chemical origin of organic molecules == | |||
Biogenic ] has been found in 3.7 Gya metasedimentary rocks from southwestern ]<ref name="NG-20131208">{{cite journal |last1=Ohtomo |first1=Yoko |last2=Kakegawa |first2=Takeshi |last3=Ishida |first3=Akizumi |last4=Nagase |first4=Toshiro |last5=Rosing |first5=Minik T. |display-authors=3 |date=January 2014 |title=Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks |journal=] |volume=7 |issue=1 |pages=25–28 |bibcode=2014NatGe...7...25O |doi=10.1038/ngeo2025}}</ref> and in ] fossils from 3.49 Gya cherts in the ] region of ].<ref name="AST-20131108">{{cite journal |last1=Noffke |first1=Nora |author1-link=Nora Noffke |last2=Christian |first2=Daniel |last3=Wacey |first3=David |last4=Hazen |first4=Robert M. |author-link4=Robert Hazen |date=16 November 2013 |title=Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ''ca.'' 3.48 Gyo Dresser Formation, Pilbara, Western Australia |journal=] |volume=13 |issue=12 |pages=1103–1124 |bibcode=2013AsBio..13.1103N |doi=10.1089/ast.2013.1030 |pmc=3870916 |pmid=24205812}}</ref> Evidence of early life in rocks from ] Island, near the ] in southwestern Greenland, dating to 3.7 Gya, have shown biogenic ]s.<ref>{{harvnb|Davies|1999}}</ref> In other parts of the Isua supracrustal belt, graphite inclusions trapped within ] crystals are connected to the other elements of life: oxygen, nitrogen, and possibly phosphorus in the form of ], providing further evidence for life 3.7 Gya.<ref>{{cite journal |last1=Hassenkam |first1=T. |last2=Andersson |first2=M. P. |last3=Dalby |first3=K. N. |last4=Mackenzie |first4=D. M. A. |last5=Rosing |first5=M.T. |title=Elements of Eoarchean life trapped in mineral inclusions |journal=] |doi=10.1038/nature23261 |pmid=28738409 |volume=548 |issue=7665 |pages=78–81 |year=2017 |bibcode=2017Natur.548...78H |s2cid=205257931}}</ref> In the ] region of Western Australia, compelling evidence of early life was found in ]-bearing sandstone in a fossilized beach, with rounded tubular cells that oxidized sulfur by photosynthesis in the absence of oxygen.<ref>{{cite journal |last=O'Donoghue |first=James |date=21 August 2011 |title=Oldest reliable fossils show early life was a beach |journal=] |doi=10.1016/S0262-4079(11)62064-2 |volume=211 |page=13 |url=https://www.newscientist.com/article/dn20813-oldest-reliable-fossils-show-early-life-was-a-beach/ |url-status=live |archive-url=https://web.archive.org/web/20150630201918/http://www.newscientist.com/article/dn20813-oldest-reliable-fossils-show-early-life-was-a-beach.html |archive-date=30 June 2015}}</ref><ref>{{cite journal |last1=Wacey |first1=David |last2=Kilburn |first2=Matt R. |last3=Saunders |first3=Martin |last4=Cliff |first4=John |last5=Brasier |first5=Martin D. |author-link5=Martin Brasier |display-authors=3 |date=October 2011 |title=Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia |journal=] |volume=4 |issue=10 |pages=698–702 |bibcode=2011NatGe...4..698W |doi=10.1038/ngeo1238}}</ref> Carbon isotope ratios on graphite inclusions from the Jack Hills zircons suggest that life could have existed on Earth from 4.1 Gya.<ref>{{Cite journal |last1=Bell |first1=Elizabeth A. |last2=Boehnke |first2=Patrick |last3=Harrison |first3=T. Mark |last4=Mao |first4=Wendy L. |date=2015-11-24 |title=Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon |journal=Proceedings of the National Academy of Sciences |volume=112 |issue=47 |pages=14518–14521 |doi=10.1073/pnas.1517557112 |pmc=4664351 |pmid=26483481 |bibcode=2015PNAS..11214518B |doi-access=free }}</ref> | |||
The ], except for hydrogen, ultimately derive from ]. Complex molecules, including organic molecules, form naturally both in space and on planets.<ref name="Ehrenfreund2010" /> There are two possible sources of organic molecules on the early Earth: | |||
# Terrestrial origins – organic molecule synthesis driven by impact shocks or by other energy sources (such as UV light, ] coupling, or electrical discharges) (e.g., Miller's experiments) | |||
# Extraterrestrial origins – formation of organic molecules in ], which rain down on planets.<ref name="Gawlowicz 2011">{{cite news |last=Gawlowicz |first=Susan |date=6 November 2011 |title=Carbon-based organic 'carriers' in interstellar dust clouds? Newly discovered diffuse interstellar bands |url=http://www.sciencedaily.com/releases/2011/11/111102161149.htm |work=] |location=Rockville, MD |publisher=ScienceDaily, LLC |accessdate=2015-06-08}} Post is reprinted from materials provided by the ]. | |||
* {{cite journal |last1=Geballe |first1=Thomas R. |last2=Najarro |first2=Francisco |last3=Figer |first3=Donald F. |authorlink3=Donald Figer |last4=Schlegelmilch |first4=Barret W. |last5=de la Fuente |first5=Diego |display-authors=3 |date=10 November 2011 |title=Infrared diffuse interstellar bands in the Galactic Centre region |journal=Nature |location=London |publisher=Nature Publishing Group |volume=479 |issue=7372 |pages=200–202 |arxiv=1111.0613 |bibcode=2011Natur.479..200G |doi=10.1038/nature10527 |issn=0028-0836 |pmid=22048316}}</ref><ref>{{harvnb|Klyce|2001}}</ref> (See ]) | |||
The Pilbara region of Western Australia contains the ] with rocks 3.48 Gya, including layered structures called ]s. Their modern counterparts are created by photosynthetic micro-organisms including ].<ref>{{cite journal |last1=Baumgartner |first1=Rafael |last2=Van Kranendonk |first2=Martin |last3= Wacey |first3=David |last4=Fiorentini |first4=Marco |last5=Saunders |first5=Martin |last6=Caruso |first6=Caruso |last7=Pages |first7=Anais |last8=Homann |first8=Martin |last9= Guagliardo |first9=Paul |display-authors=3 |year=2019 |title=Nano−porous pyrite and organic matter in 3.5-billion-year-old stromatolites record primordial life |journal= ] |volume=47 |issue=11 |pages=1039–1043 |doi=10.1130/G46365.1 |bibcode=2019Geo....47.1039B |s2cid=204258554 |url= https://discovery.ucl.ac.uk/id/eprint/10087275/1/Baumgartner%20et%20al%202019%20accepted.pdf |access-date=10 January 2021 |archive-date=5 December 2020 |archive-url=https://web.archive.org/web/20201205130046/https://discovery.ucl.ac.uk/id/eprint/10087275/1/Baumgartner%20et%20al%202019%20accepted.pdf |url-status=live }}</ref> These lie within undeformed hydrothermal-sedimentary strata; their texture indicates a biogenic origin. Parts of the Dresser formation preserve ]s on land, but other regions seem to have been shallow seas.<ref name="Djokic Van Kranendonk 2017">{{cite journal |last1=Djokic |first1=Tara |last2=Van Kranendonk |first2=Martin J. |last3=Campbell |first3=Kathleen A. |last4=Walter |first4=Malcolm R. |last5=Ward |first5=Colin R. |date=9 May 2017 |title=Earliest signs of life on land preserved in ca. 3.5 Gao hot spring deposits |journal=] |volume=8 |page=15263 |bibcode=2017NatCo...815263D |doi=10.1038/ncomms15263 |pmc=5436104 |pmid=28486437}}</ref> A molecular clock analysis suggests the LUCA emerged prior to 3.9 Gya.<ref>{{Cite journal |last1=Betts |first1=Holly C. |last2=Puttick |first2=Mark N. |last3=Clark |first3=James W. |last4=Williams |first4=Tom A. |last5=Donoghue |first5=Philip C. J. |last6=Pisani |first6=Davide |date=20 August 2018 |title=Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin |journal=Nature Ecology & Evolution |volume=2 |issue=10 |pages=1556–1562 |doi=10.1038/s41559-018-0644-x |pmid=30127539|pmc=6152910 |bibcode=2018NatEE...2.1556B }}</ref> | |||
Estimates of the production of organics from these sources suggest that the ] before 3.5 Ga within the early atmosphere made available quantities of organics comparable to those produced by terrestrial sources.<ref>{{cite journal |last=Chyba |first=Christopher |authorlink=Christopher Chyba |last2=Sagan |first2=Carl |authorlink2=Carl Sagan |date=9 January 1992 |title=Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life |journal=Nature |location=London |publisher=Nature Publishing Group |volume=355 |issue=6356 |pages=125–132 |bibcode=1992Natur.355..125C |doi=10.1038/355125a0 |issn=0028-0836 |pmid=11538392}}</ref><ref>{{cite journal |last1=Furukawa |first1=Yoshihiro |last2=Sekine |first2=Toshimori |last3=Oba |first3=Masahiro |last4=Kakegawa |first4=Takeshi |last5=Nakazawa |first5=Hiromoto |display-authors=3 |date=January 2009 |title=Biomolecule formation by oceanic impacts on early Earth |journal=Nature Geoscience |location=London |publisher=Nature Publishing Group |volume=2 |issue=1 |pages=62–66 |bibcode=2009NatGe...2...62F |doi=10.1038/NGEO383 |issn=1752-0894}}</ref> | |||
<gallery mode="packed" heights="160"> | |||
] demonstrating extreme ]s at the base of the ].]] | |||
File:Stromatolites.jpg|Fossilized ]s in the Siyeh Formation, ], dated 3.5 Gya, placing them among the earliest life-forms | |||
File:Stromatolites in Sharkbay.jpg|Modern stromatolites in ], created by photosynthetic ] | |||
</gallery> | |||
== Producing molecules: prebiotic synthesis == | |||
It has been estimated that the Late Heavy Bombardment may also have effectively sterilised the Earth's surface to a depth of tens of metres. If life evolved deeper than this, it would have also been shielded from the early high levels of ultraviolet radiation from the T Tauri stage of the Sun's evolution. Simulations of geothermically heated oceanic crust yield far more organics than those found in the Miller-Urey experiments (see below). In the deep ]s, Everett Shock has found "there is an enormous thermodynamic drive to form organic compounds, as ] and hydrothermal fluids, which are far from equilibrium, mix and move towards a more stable state."<ref>{{harvnb|Davies|1999|p=155}}</ref> Shock has found that the available energy is maximised at around 100 – 150 degrees Celsius, precisely the temperatures at which the ] bacteria and ] ] have been found, at the base of the ] closest to the ] (LUCA).<ref>{{harvnb|Bock|Goode|1996}}</ref> | |||
{{further|Nucleosynthesis}} | |||
=== Chemical synthesis === | |||
While features of ] and ] are often considered the hallmark of living systems, there are many instances of abiotic molecules exhibiting such characteristics under proper conditions. Stan Palasek showed that self-assembly of ] (RNA) molecules can occur spontaneously due to physical factors in hydrothermal vents.<ref>{{cite arXiv |last=Palasek |first=Stan |eprint=1305.5581v1 |title=Primordial RNA Replication and Applications in PCR Technology |class=q-bio.BM |date=23 May 2013}}</ref> ] self-assembly within host cells has implications for the study of the origin of life,<ref name="pmid16984643">{{cite journal |last1=Koonin |first1=Eugene V. |authorlink=Eugene Koonin |last2=Senkevich |first2=Tatiana G. |last3=Dolja |first3=Valerian V. |date=19 September 2006 |title=The ancient Virus World and evolution of cells |journal=] |location=London |publisher=] |volume=1 |page=29 |doi=10.1186/1745-6150-1-29 |issn=1745-6150 |pmc=1594570 |pmid=16984643}}</ref> as it lends further credence to the hypothesis that life could have started as self-assembling organic molecules.<ref name="pmid16044244">{{cite journal |last1=Vlassov |first1=Alexander V. |last2=Kazakov |first2=Sergei A. |last3=Johnston |first3=Brian H. |last4=Landweber |first4=Laura F. |display-authors=3 |date=August 2005 |title=The RNA World on Ice: A New Scenario for the Emergence of RNA Information |journal=] |location=Berlin |publisher=Springer-Verlag |volume=61 |issue=2 |pages=264–273 |doi=10.1007/s00239-004-0362-7 |issn=0022-2844 |pmid=16044244}}</ref><ref>{{cite journal |last1=Nussinov |first1=Mark D. |last2=Otroshchenko |first2=Vladimir A. |last3=Santoli |first3=Salvatore |year=1997 |title=The emergence of the non-cellular phase of life on the fine-grained clayish particles of the early Earth's regolith |journal=] |location=Amsterdam, the Netherlands |publisher=Elsevier |volume=42 |issue=2–3 |pages=111–118 |doi=10.1016/S0303-2647(96)01699-1 |issn=0303-2647 |pmid=9184757}}</ref> | |||
All ]s derive from stellar nucleosynthesis except for hydrogen and some helium and lithium. Basic chemical ingredients of life – the ] (CH), the carbon-hydrogen positive ion (CH+) and the carbon ion (C+) – can be produced by ] from stars.<ref name="NASA-20161012">{{cite web |last=Landau |first=Elizabeth |title=Building Blocks of Life's Building Blocks Come From Starlight |url=http://www.jpl.nasa.gov/news/news.php?feature=6645 |date=12 October 2016 |work=] |access-date=13 October 2016 |url-status=live |archive-url=https://web.archive.org/web/20161013135018/http://www.jpl.nasa.gov/news/news.php?feature=6645 |archive-date=13 October 2016}}</ref> Complex molecules, including organic molecules, form naturally both in space and on planets.<ref name="Ehrenfreund2010"/> Organic molecules on the early Earth could have had either terrestrial origins, with organic molecule synthesis driven by impact shocks or by other energy sources, such as ultraviolet light, ] coupling, or electrical discharges; or extraterrestrial origins (]), with organic molecules formed in ] raining down on to the planet.<ref>{{cite journal |last1=Geballe |first1=Thomas R. |last2=Najarro |first2=Francisco |last3=Figer |first3=Donald F. |author-link3=Donald Figer |last4=Schlegelmilch |first4=Barret W. |last5=de la Fuente |first5=Diego |display-authors=3 |date=10 November 2011 |title=Infrared diffuse interstellar bands in the Galactic Centre region |journal=] |volume=479 |issue=7372 |pages=200–202 |arxiv=1111.0613 |bibcode=2011Natur.479..200G |doi=10.1038/nature10527 |pmid=22048316 |s2cid=17223339 |ref=none}}</ref><ref>{{harvnb|Klyce|2001}}</ref> | |||
Multiple sources of energy were available for chemical reactions on the early Earth. For example, heat (such as from ] processes) is a standard energy source for chemistry. Other examples include sunlight and electrical discharges (lightning), among others.<ref name="Follmann2009" /> Unfavorable reactions can also be driven by highly favorable ones, as in the case of iron-sulfur chemistry. For example, this was probably important for ] (the conversion of carbon from its inorganic form to an organic one).<ref group=note>The reactions are: | |||
:FeS + H<sub>2</sub>S → FeS<sub>2</sub> + 2H<sup>+</sup> + 2e<sup>−</sup> | |||
:FeS + H<sub>2</sub>S + CO<sub>2</sub> → FeS<sub>2</sub> + HCOOH</ref> Carbon fixation via iron-sulfur chemistry is highly favorable, and occurs at neutral pH and {{convert|100|C}}. Iron-sulfur surfaces, which are abundant near hydrothermal vents, are also capable of producing small amounts of amino acids and other biological metabolites.<ref name="Follmann2009" /> | |||
=== Observed extraterrestrial organic molecules === | |||
] produces all four ribonucleotides and other biological molecules when warmed in the presence of various terrestrial minerals. Formamide is ubiquitous in the Universe, produced by the reaction of water and ] (HCN). It has several advantages as a biotic precursor, including the ability to easily become concentrated through the evaporation of water.<ref name="Saladino2012">{{cite journal |last1=Saladino |first1=Raffaele |last2=Crestini |first2=Claudia |last3=Pino |first3=Samanta |last4=Costanzo |first4=Giovanna |last5=Di Mauro |first5=Ernesto |display-authors=3 |date=March 2012 |title=Formamide and the origin of life. |journal=] |location=Amsterdam, the Netherlands |publisher=Elsevier |volume=9 |issue=1 |pages=84–104 |bibcode=2012PhLRv...9...84S |doi=10.1016/j.plrev.2011.12.002 |issn=1571-0645 |pmid=22196896}}</ref><ref name="Saladino2012b">{{cite journal |last1=Saladino |first1=Raffaele |last2=Botta |first2=Giorgia |last3=Pino |first3=Samanta |last4=Costanzo |first4=Giovanna |last5=Di Mauro |first5=Ernesto |display-authors=3 |date=July 2012 |title=From the one-carbon amide formamide to RNA all the steps are prebiotically possible |journal=] |location=Amsterdam, the Netherlands |publisher=Elsevier |volume=94 |issue=7 |pages=1451–1456 |doi=10.1016/j.biochi.2012.02.018 |issn=0300-9084 |pmid=22738728}}</ref> Although HCN is poisonous, it only affects ]s (]s and aerobic bacteria), which did not yet exist. It can play roles in other chemical processes as well, such as the synthesis of the amino acid ].<ref name="Follmann2009" /> | |||
{{see also|List of interstellar and circumstellar molecules|Pseudo-panspermia}} | |||
In 1961, it was shown that the nucleic acid ] base ] can be formed by heating aqueous ] solutions.<ref>{{cite journal |last=Oró |first=Joan |authorlink=Joan Oró |date=16 September 1961 |title=Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions |journal=Nature |location=London |publisher=Nature Publishing Group |volume=191 |issue=4794 |pages=1193–1194 |bibcode=1961Natur.191.1193O |doi=10.1038/1911193a0 |issn=0028-0836 |pmid=13731264}}</ref> Other pathways for synthesizing bases from inorganic materials were also reported.<ref name="Basile1984">{{cite journal |last1=Basile |first1=Brenda |last2=Lazcano |first2=Antonio |authorlink2=Antonio Lazcano |last3=Oró |first3=Joan |year=1984 |title=Prebiotic syntheses of purines and pyrimidines |journal=] |location=Amsterdam, the Netherlands |publisher=Elsevier |volume=4 |issue=12 |pages=125–131 |bibcode=1984AdSpR...4..125B |doi=10.1016/0273-1177(84)90554-4 |issn=0273-1177 |pmid=11537766}}</ref> ] and colleagues have shown that freezing temperatures are advantageous for the synthesis of purines, due to the concentrating effect for key precursors such as hydrogen cyanide.<ref>{{cite journal |last=Orgel |first=Leslie E. |date=August 2004 |title=Prebiotic Adenine Revisited: Eutectics and Photochemistry |journal=Origins of Life and Evolution of Biospheres |publisher=Kluwer Academic Publishers |volume=34 |issue=4 |pages=361–369 |bibcode=2004OLEB...34..361O |doi=10.1023/B:ORIG.0000029882.52156.c2 |issn=0169-6149 |pmid=15279171}}</ref> Research by Stanley L. Miller and colleagues suggested that while adenine and ] require freezing conditions for synthesis, ] and ] may require boiling temperatures.<ref>{{cite journal |last1=Robertson |first1=Michael P. |last2=Miller |first2=Stanley L. |date=29 June 1995 |title=An efficient prebiotic synthesis of cytosine and uracil |journal=Nature |location=London |publisher=Nature Publishing Group |volume=375 |issue=6534 |pages=772–774 |bibcode=1995Natur.375..772R |doi=10.1038/375772a0 |issn=0028-0836 |pmid=7596408}}</ref> Research by the Miller group notes the formation of seven different amino acids and 11 types of ]s in ice when ammonia and ] were left in a freezer from 1972 to 1997.<ref>{{cite journal |last=Fox |first=Douglas |date=February 2008 |url=http://discovermagazine.com/2008/feb/did-life-evolve-in-ice |title=Did Life Evolve in Ice? |journal=] |location=Waukesha, WI |publisher=] |issn=0274-7529 |accessdate=2008-07-03}}</ref><ref>{{cite journal |last1=Levy |first1=Matthew |last2=Miller |first2=Stanley L. |last3=Brinton |first3=Karen |last4=Bada |first4=Jeffrey L. |authorlink4=Jeffrey L. Bada |date=June 2000 |title=Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions |journal=] |location=Amsterdam, the Netherlands |publisher=Elsevier |volume=145 |issue=2 |pages=609–613 |bibcode=2000Icar..145..609L |doi=10.1006/icar.2000.6365 |issn=0019-1035 |pmid=11543508}}</ref> Other work demonstrated the formation of s-]s (alternative nucleobases), ]s (including cytosine and uracil), and adenine from urea solutions subjected to freeze-thaw cycles under a reductive atmosphere (with spark discharges as an energy source).<ref>{{cite journal |last1=Menor-Salván |first1=César |last2=Ruiz-Bermejo |first2=Marta |last3=Guzmán |first3=Marcelo I. |last4=Osuna-Esteban |first4=Susana |last5=Veintemillas-Verdaguer |first5=Sabino |date=20 April 2009 |title=Synthesis of Pyrimidines and Triazines in Ice: Implications for the Prebiotic Chemistry of Nucleobases |journal=] |location=Weinheim, Germany |publisher=] on behalf of ] |volume=15 |issue=17 |pages=4411–4418 |doi=10.1002/chem.200802656 |issn=0947-6539 |pmid=19288488}}</ref> The explanation given for the unusual speed of these reactions at such a low temperature is ]. As an ice crystal forms, it stays pure: only molecules of water join the growing crystal, while impurities like salt or cyanide are excluded. These impurities become crowded in microscopic pockets of liquid within the ice, and this crowding causes the molecules to collide more often. Mechanistic exploration using quantum chemical methods provide a more detailed understanding of some of the chemical processes involved in chemical evolution, and a partial answer to the fundamental question of molecular biogenesis.<ref>{{cite journal |last1=Roy |first1=Debjani |last2=Najafian |first2=Katayoun |last3=von Ragué Schleyer |first3=Paul |authorlink3=Paul von Ragué Schleyer |date=30 October 2007 |title=Chemical evolution: The mechanism of the formation of adenine under prebiotic conditions |journal=Proc. Natl. Acad. Sci. U.S.A. |location=Washington, D.C. |publisher=National Academy of Sciences |volume=104 |issue=44 |pages=17272–17277 |bibcode=2007PNAS..10417272R |doi=10.1073/pnas.0708434104 |issn=0027-8424 |pmc=2077245 |pmid=17951429}}</ref> | |||
An organic compound is a chemical whose molecules contain carbon. Carbon is abundant in the Sun, stars, comets, and in the ]s of most planets of the Solar System.<ref name="NASA-20140221">{{cite web |url=http://www.nasa.gov/ames/need-to-track-organic-nano-particles-across-the-universe-nasas-got-an-app-for-that/ |title=Need to Track Organic Nano-Particles Across the Universe? NASA's Got an App for That |last=Hoover |first=Rachel |date=21 February 2014 |website=] |publisher=] |access-date=22 June 2015 |url-status=live |archive-url=https://web.archive.org/web/20150906061428/http://www.nasa.gov/ames/need-to-track-organic-nano-particles-across-the-universe-nasas-got-an-app-for-that/ |archive-date=6 September 2015}}</ref> Organic compounds are relatively common in space, formed by "factories of complex molecular synthesis" which occur in molecular clouds and ]s, and chemically evolve after reactions are initiated mostly by ].<ref name="Ehrenfreund2010">{{cite journal |last1=Ehrenfreund |first1=Pascale |last2=Cami |first2=Jan |date=December 2010 |title=Cosmic carbon chemistry: from the interstellar medium to the early Earth. |journal=] |volume=2 |issue=12 |page=a002097 |doi=10.1101/cshperspect.a002097 |pmc=2982172 |pmid=20554702}}</ref><ref>{{cite journal |last1=Goncharuk |first1=Vladislav V. |last2=Zui |first2=O. V. |date=February 2015 |title=Water and carbon dioxide as the main precursors of organic matter on Earth and in space |journal=Journal of Water Chemistry and Technology |volume=37 |issue=1 |pages=2–3 |doi=10.3103/S1063455X15010026 |bibcode=2015JWCT...37....2G |s2cid=97965067}}</ref><ref>{{cite journal |last1=Abou Mrad |first1=Ninette |last2=Vinogradoff |first2=Vassilissa |last3=Duvernay |first3=Fabrice |last4=Danger |first4=Grégoire |last5=Theulé |first5=Patrice |last6=Borget |first6=Fabien |last7=Chiavassa |first7=Thierry |display-authors=3 |year=2015 |title=Laboratory experimental simulations: Chemical evolution of the organic matter from interstellar and cometary ice analogs |url=http://popups.ulg.ac.be/0037-9565/index.php?id=4621&file=1 |journal=Bulletin de la Société Royale des Sciences de Liège |volume=84 |pages=21–32 |bibcode=2015BSRSL..84...21A |access-date=6 April 2015 |url-status=live |archive-url=https://web.archive.org/web/20150413050621/http://popups.ulg.ac.be/0037-9565/index.php?id=4621&file=1 |archive-date=13 April 2015}}</ref> ] and ] nucleobases including ], ], ], ], and ] have been found in ]s. These could have provided the materials for DNA and ] to form on the ].<ref name="NC-20220426">{{cite journal |last=Oba |first=Yasuhiro |display-authors=|title=Identifying the wide diversity of extraterrestrial purine and pyrimidine nucleobases in carbonaceous meteorites |date=26 April 2022 |journal=] |volume=13 |number=2008 |page=2008 |doi=10.1038/s41467-022-29612-x |pmid=35473908 |pmc=9042847 |bibcode=2022NatCo..13.2008O |s2cid=248402205}}</ref> The amino acid ] was found in material ejected from comet ]; it had earlier been detected in meteorites.<ref>{{cite news |last=<!--Staff writer(s); no by-line.--> |date=18 August 2009 |title='Life chemical' detected in comet |url=http://news.bbc.co.uk/2/hi/science/nature/8208307.stm |work=BBC News |location=London |access-date=23 June 2015 |url-status=live |archive-url=https://web.archive.org/web/20150525071228/http://news.bbc.co.uk/2/hi/science/nature/8208307.stm |archive-date=25 May 2015}}</ref> Comets are encrusted with dark material, thought to be a ]-like organic substance formed from simple carbon compounds under ionizing radiation. A rain of material from comets could have brought such complex organic molecules to Earth.<ref>{{cite journal |last1=Thompson |first1=William Reid |last2=Murray |first2=B. G. |last3=Khare |first3=Bishun Narain |author-link3=Bishun Khare |last4=Sagan |first4=Carl |author4-link=Carl Sagan |date=30 December 1987 |title=Coloration and darkening of methane clathrate and other ices by charged particle irradiation: Applications to the outer solar system |journal=] |volume=92 |issue=A13 |pages=14933–14947 |bibcode=1987JGR....9214933T |doi=10.1029/JA092iA13p14933 |pmid=11542127}}</ref><ref>{{cite journal |last1=Goldman |first1=Nir |last2=Tamblyn |first2=Isaac |date=20 June 2013 |title=Prebiotic Chemistry within a Simple Impacting Icy Mixture |journal=] |volume=117 |issue=24 |pages=5124–5131 |doi=10.1021/jp402976n |pmid=23639050 |bibcode=2013JPCA..117.5124G |s2cid=5144843 |url=http://nparc.nrc-cnrc.gc.ca/eng/view/fulltext/?id=e89d2ac7-4cf8-40e0-bcc9-3c53f68ed70a |access-date=29 August 2019 |archive-date=21 July 2018 |archive-url=https://web.archive.org/web/20180721183453/http://nparc.nrc-cnrc.gc.ca/eng/view/fulltext/?id=e89d2ac7-4cf8-40e0-bcc9-3c53f68ed70a |url-status=live }}</ref><ref name="Follmann2009"/> It is estimated that during the Late Heavy Bombardment, meteorites may have delivered up to five million ]s of organic prebiotic elements to Earth per year.<ref name="Follmann2009"/> Currently 40,000 tons of cosmic dust falls to Earth each year.<ref>https://www.astronomy.com/science/how-much-dust-falls-on-earth-each-year-does-it-affect-our-planets-gravity/</ref> | |||
At the time of the Miller–Urey experiment, scientific consensus was that the early Earth had a reducing atmosphere with compounds relatively rich in hydrogen and poor in oxygen (e.g., CH<sub>4</sub> and NH<sub>3</sub> as opposed to CO<sub>2</sub> and ] (NO<sub>2</sub>)). However, current scientific consensus describes the primitive atmosphere as either weakly reducing or neutral<ref name="Cleaves 2008">{{cite journal |last1=Cleaves |first1=H. James |last2=Chalmers |first2=John H. |last3=Lazcano |first3=Antonio |last4=Miller |first4=Stanley L. |last5=Bada |first5=Jeffrey L. |display-authors=3 |date=April 2008 |title=A Reassessment of Prebiotic Organic Synthesis in Neutral Planetary Atmospheres |journal=Origins of Life and Evolution of Biospheres |location=Dordrecht, the Netherlands |publisher=] |volume=38 |issue=2 |pages=105–115 |bibcode=2008OLEB...38..105C |doi=10.1007/s11084-007-9120-3 |issn=0169-6149 |pmid=18204914}}</ref><ref name="Chyba 2005">{{cite journal |last=Chyba |first=Christopher F. |date=13 May 2005 |title=Rethinking Earth's Early Atmosphere |journal=Science |location=Washington, D.C. |publisher=American Association for the Advancement of Science |volume=308 |issue=5724 |pages=962–963 |doi=10.1126/science.1113157 |issn=0036-8075 |pmid=15890865}}</ref> (see also ]). Such an atmosphere would diminish both the amount and variety of amino acids that could be produced, although studies that include ] and ] minerals (thought present in early oceans) in the experimental conditions have again produced a diverse array of amino acids.<ref name="Cleaves 2008" /> Other scientific research has focused on two other potential reducing environments: ] and deep-sea thermal vents.<ref>{{harvnb|Barton|Briggs|Eisen|Goldstein|2007|pp=93–95}}</ref><ref>{{harvnb|Bada|Lazcano|2009|pp=56–57}}</ref><ref name="Bada 2003">{{cite journal |last1=Bada |first1=Jeffrey L. |last2=Lazcano |first2=Antonio |date=2 May 2003 |url=http://astrobiology.berkeley.edu/PDFs_articles/Bada_Science2003.pdf |format=PDF |title=Prebiotic Soup--Revisiting the Miller Experiment |journal=Science |location=Washington, D.C. |publisher=American Association for the Advancement of Science |volume=300 |issue=5620 |pages=745–746 |doi=10.1126/science.1085145 |issn=0036-8075 |pmid=12730584 |accessdate=2015-06-13}}</ref> | |||
==== Polycyclic aromatic hydrocarbons==== | |||
The spontaneous formation of complex polymers from abiotically generated monomers under the conditions posited by the "soup" theory is not at all a straightforward process. Besides the necessary basic organic monomers, compounds that would have prohibited the formation of polymers were also formed in high concentration during the Miller–Urey and ] experiments.<ref>{{cite journal |last=Oró |first=Joan |last2=Kimball |first2=Aubrey P. |date=February 1962 |title=Synthesis of purines under possible primitive earth conditions: II. Purine intermediates from hydrogen cyanide |journal=] |location=Amsterdam, the Netherlands |publisher=Elsevier |volume=96 |issue=2 |pages=293–313 |doi=10.1016/0003-9861(62)90412-5 |issn=0003-9861 |pmid=14482339}}</ref> The Miller–Urey experiment, for example, produces many substances that would react with the amino acids or terminate their coupling into peptide chains.<ref>{{cite book |editor-last=Ahuja |editor-first=Mukesh |year=2006 |chapter=Origin of Life |chapterurl=https://books.google.com/books?id=VJF12TlT58kC&pg=PA11#v=onepage&q&f=false |title=Life Science |volume=1 |location=Delhi |publisher=Isha Books |page=11 |isbn=81-8205-386-2 |oclc=297208106 |ref=harv}}{{Unreliable source?|reason=What material is Ahuja editing? Further, see use of Ahuja material in the Iron-sulfur world section in this WP article, among others. See also: Misplaced Pages talk:Noticeboard for India-related topics/Archive 42#Problem with ISHA books as references|date=June 2015}}</ref> | |||
] is inside the ], in the ] ].<br/>Green areas show regions where radiation from hot stars collided with large molecules and small dust grains called "]s" (PAHs), causing them to ]. ], 2018.]] | |||
A research project completed in March 2015 by ] and others found that a network of reactions beginning with hydrogen cyanide and hydrogen sulfide, in streams of water irradiated by UV light, could produce the chemical components of proteins and lipids, as well as those of RNA,<ref>{{cite news |last=Service |first=Robert F. |date=16 March 2015 |title=Researchers may have solved origin-of-life conundrum |url=http://news.sciencemag.org/biology/2015/03/researchers-may-have-solved-origin-life-conundrum |work=Science |type=News |location=Washington, D.C. |publisher=American Association for the Advancement of Science |issn=1095-9203 |accessdate=2015-07-26}}</ref><ref name="patel">{{cite journal |last1=Patel |first1=Bhavesh H.|last2=Percivalle |first2=Claudia |last3=Ritson |first3=Dougal J. |last4=Duffy |first4=Colm D. |last5=Sutherland |first5=John D. |authorlink5=John Sutherland (chemist) |date=April 2015 |title=Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism |url=http://www.nature.com/nchem/journal/v7/n4/full/nchem.2202.html |journal=] |location=London |publisher=Nature Publishing Group |volume=7 |issue=4 |pages=301–307 |bibcode=2015NatCh...7..301P |doi=10.1038/nchem.2202 |issn=1755-4330 |pmid=25803468 |accessdate=2015-07-22 |ref=harv |pmc=4568310}}</ref> while not producing a wide range of other compounds.<ref>{{harvnb|Patel|Percivalle|Ritson|Duffy|2015|p=302}}</ref> The researchers used the term "cyanosulfidic" to describe this network of reactions.<ref name="patel" /> | |||
]s (PAH) are the most common and abundant polyatomic molecules in the ], and are a major store of carbon.<ref name="NASA-20140221"/><ref>{{cite web |url=http://www.astrochem.org/pahdb/ |title=NASA Ames PAH IR Spectroscopic Database |publisher=NASA |access-date=17 June 2015 |url-status=live |archive-url=https://web.archive.org/web/20150629185734/http://www.astrochem.org/pahdb/ |archive-date=29 June 2015}}</ref><ref name="AJ-20051010">{{cite journal |last1=Hudgins |first1=Douglas M. |last2=Bauschlicher |first2=Charles W. Jr. |last3=Allamandola |first3=Louis J. |date=10 October 2005 |title=Variations in the Peak Position of the 6.2 μm Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population |journal=] |volume=632 |pages=316–332 |issue=1 |bibcode=2005ApJ...632..316H |doi=10.1086/432495 |citeseerx=10.1.1.218.8786 |s2cid=7808613}}</ref><ref name="NASA-20110413">{{cite web |last1=Des Marais |first1=David J. |last2=Allamandola |first2=Louis J. |last3=Sandford |first3=Scott |author-link3=Scott Sandford |last4=Mattioda |first4=Andrew |last5=Gudipati |first5=Murthy |last6=Roser |first6=Joseph |last7=Bramall |first7=Nathan |last8=Nuevo |first8=Michel |last9=Boersma |first9=Christiaan |last10=Bernstein |first10=Max |last11=Peeters |first11=Els |first14=Jason |last14=Dworkin |first13=Jamie Elsila |last13=Cook |first12=Jan |last12=Cami |display-authors=3 |year=2009 |title=Cosmic Distribution of Chemical Complexity |website=Ames Research Center |publisher=NASA |location=Mountain View, California |url=http://amesteam.arc.nasa.gov/Research/cosmic.html |access-date=24 June 2015 |archive-url=https://web.archive.org/web/20140227184503/http://amesteam.arc.nasa.gov/Research/cosmic.html |archive-date=27 February 2014}}</ref> They seem to have formed shortly after the Big Bang,<ref name="SP-20051018"/><ref name="AJ-20051010"/><ref name="NASA-20110413"/> and are associated with ] and ]s.<ref name="NASA-20140221"/> They are a likely constituent of Earth's primordial sea.<ref name="SP-20051018">{{cite news |last=Carey |first=Bjorn |date=18 October 2005 |title=Life's Building Blocks 'Abundant in Space' |url=http://www.space.com/1686-life-building-blocks-abundant-space.html |website=Space.com |location=Watsonville, California |publisher=] |access-date=23 June 2015 |url-status=live |archive-url=https://web.archive.org/web/20150626223942/http://www.space.com/1686-life-building-blocks-abundant-space.html |archive-date=26 June 2015}}</ref><ref name="AJ-20051010"/><ref name="NASA-20110413"/> PAHs have been detected in ]e,<ref name="AJL-20101120">{{cite journal |last1=García-Hernández |first1=Domingo. A. |last2=Manchado |first2=Arturo |last3=García-Lario |first3=Pedro |last4=Stanghellini |first4=Letizia |last5=Villaver |first5=Eva |last6=Shaw |first6=Richard A. |last7=Szczerba |first7=Ryszard |last8=Perea-Calderón |first8=Jose Vicente |display-authors=3 |date=20 November 2010 |title=Formation of Fullerenes in H-Containing Planetary Nebulae |journal=] |volume=724 |issue=1 |pages=L39–L43 |arxiv=1009.4357 |bibcode=2010ApJ...724L..39G |doi=10.1088/2041-8205/724/1/L39 |s2cid=119121764}}</ref> and in the ], in comets, and in meteorites.<ref name="NASA-20140221"/> | |||
Transition element metal compounds are often found in volcanoes and can remove water from organic compounds. | |||
Vanadium phosphate is partuclarly good at this and it is possible that vanadium phosphate in volcanoes could have catalyzed the | |||
reaction between phosphate groups to form phosphodiester bonds in nucleic acids. | |||
A star, HH 46-IR, resembling the sun early in its life, is surrounded by a disk of material which contains molecules including cyanide compounds, ]s, and carbon monoxide. PAHs in the interstellar medium can be transformed through ], ], and ] to more complex organic compounds used in living cells.<ref name="AJL-20120901">{{cite journal |last1=Gudipati |first1=Murthy S. |last2=Yang |first2=Rui |date=1 September 2012 |title=In-situ Probing of Radiation-induced Processing of Organics in Astrophysical Ice Analogs – Novel Laser Desorption Laser Ionization Time-of-flight Mass Spectroscopic Studies |journal=] |volume=756 |issue=1 |bibcode=2012ApJ...756L..24G |doi=10.1088/2041-8205/756/1/L24 |page=L24 |s2cid=5541727}}</ref> | |||
=== Autocatalysis === | |||
{{Main|Autocatalysis}} | |||
] are substances that catalyze the production of themselves and therefore are "molecular replicators." The simplest self-replicating chemical systems are autocatalytic, and typically contain three components: a product molecule and two precursor molecules. The product molecule joins together the precursor molecules, which in turn produce more product molecules from more precursor molecules. The product molecule catalyzes the reaction by providing a complementary template that binds to the precursors, thus bringing them together. Such systems have been demonstrated both in biological ]s and in small organic molecules.<ref name="Paul2004">{{cite journal |last1=Paul |first1=Natasha |last2=Joyce |first2=Gerald F. |date=December 2004 |title=Minimal self-replicating systems |journal=] in Chemical Biology |location=Amsterdam, the Netherlands |publisher=Elsevier |volume=8 |issue=6 |pages=634–639 |doi=10.1016/j.cbpa.2004.09.005 |issn=1367-5931 |pmid=15556408}}</ref><ref name="Bissette2013">{{cite journal |last1=Bissette |first1=Andrew J. |last2=Fletcher |first2=Stephen P. |date=2 December 2013 |title=Mechanisms of Autocatalysis |journal=] International Edition |location=Weinheim, Germany |publisher=Wiley-VCH on behalf of the ] |volume=52 |issue=49 |pages=12800–12826 |doi=10.1002/anie.201303822 |issn=1433-7851 |pmid=24127341}}</ref> Systems that do not proceed by template mechanisms, such as the self-reproduction of ]s and ], have also been observed.<ref name="Bissette2013" /> | |||
==== Nucleobases and nucleotides ==== | |||
It has been proposed that life initially arose as autocatalytic chemical networks.<ref>{{harvnb|Kauffman|1993|loc=chpt. 7}}</ref> ] ] ] wrote about autocatalysis as a potential explanation for the origin of life in his 2004 book '']''.<ref>{{harvnb|Dawkins|2004}}</ref> In his book, Dawkins cites experiments performed by ], Jr. and his colleagues in which they combined ] and ] with the autocatalyst amino adenosine triacid ester (AATE). One product was a variant of AATE, which catalysed the synthesis of themselves. This experiment demonstrated the possibility that autocatalysts could exhibit competition within a population of entities with heredity, which could be interpreted as a rudimentary form of natural selection.<ref>{{cite journal |last1=Tjivikua |first1=T. |last2=Ballester |first2=Pablo |last3=Rebek |first3=Julius, Jr. |authorlink3=Julius Rebek |date=January 1990 |title=Self-replicating system |journal=] |location=Washington, D.C. |publisher=] |volume=112 |issue=3 |pages=1249–1250 |doi=10.1021/ja00159a057 |issn=0002-7863}}</ref><ref>{{cite news |last=Browne |first=Malcolm W. |authorlink=Malcolm Browne |date=30 October 1990 |title=Chemists Make Molecule With Hint of Life |url=http://www.nytimes.com/1990/10/30/science/chemists-make-molecule-with-hint-of-life.html |newspaper=The New York Times |location=New York |publisher=The New York Times Company |issn=0362-4331 |accessdate=2015-07-14}}</ref> | |||
{{further|Nucleobase|Nucleotide}} | |||
In the early 1970s, Manfred Eigen and ] examined the transient stages between the molecular chaos and a self-replicating ] in a prebiotic soup.<ref>{{harvnb|Eigen|Schuster|1979}}</ref> In a hypercycle, the ] storing system (possibly RNA) produces an ], which catalyzes the formation of another information system, in sequence until the product of the last aids in the formation of the first information system. Mathematically treated, hypercycles could create ], which through natural selection entered into a form of Darwinian evolution. A boost to hypercycle theory was the discovery of ]s capable of catalyzing their own chemical reactions. The hypercycle theory requires the existence of complex biochemicals, such as nucleotides, which do not form under the conditions proposed by the Miller–Urey experiment. | |||
Organic compounds introduced on Earth by ] can help to form complex molecules, thanks to their peculiar ] activities.<ref name="Lincei">{{cite journal |last=Gallori |first=Enzo |title=Astrochemistry and the origin of genetic material |journal=Rendiconti Lincei |date=June 2011 |volume=22 |issue=2 |pages=113–118 |doi=10.1007/s12210-011-0118-4 |s2cid=96659714}} "Paper presented at the Symposium 'Astrochemistry: molecules in space and time' (Rome, 4–5 November 2010), sponsored by Fondazione 'Guido Donegani', Accademia Nazionale dei Lincei."</ref><ref>{{cite journal |last=Martins |first=Zita |author-link=Zita Martins |date=February 2011 |title=Organic Chemistry of Carbonaceous Meteorites |journal=] |volume=7 |issue=1 |pages=35–40 |doi=10.2113/gselements.7.1.35|bibcode=2011Eleme...7...35M }}</ref> The RNA component uracil and related molecules, including ], in the ] were likely formed extraterrestrially, as suggested by studies of <sup>12</sup>C/<sup>13</sup>C ].<ref name="Murch_base">{{cite journal |last1=Martins |first1=Zita |last2=Botta |first2=Oliver |last3=Fogel |first3=Marilyn L. |last4=Sephton |first4=Mark A. |last5=Glavin |first5=Daniel P. |last6=Watson |first6=Jonathan S. |last7=Dworkin |first7=Jason P. |last8=Schwartz |first8=Alan W. |last9=Ehrenfreund |first9=Pascale |display-authors=3 |date=15 June 2008 |title=Extraterrestrial nucleobases in the Murchison meteorite |journal=] |volume=270 |issue=1–2 |pages=130–136 |bibcode=2008E&PSL.270..130M |arxiv=0806.2286 |doi=10.1016/j.epsl.2008.03.026 |s2cid=14309508}}</ref> NASA studies of meteorites suggest that all four DNA nucleobases (adenine, guanine and related organic molecules) have been formed in outer space.<ref name="Lincei"/><ref name="Callahan">{{cite journal |last1=Callahan |first1=Michael P. |last2=Smith |first2=Karen E. |last3=Cleaves |first3=H. James II |last4=Ruzica |first4=Josef |last5=Stern |first5=Jennifer C. |last6=Glavin |first6=Daniel P. |last7=House |first7=Christopher H. |last8=Dworkin |first8=Jason P. |display-authors=3 |date=23 August 2011 |title=Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases |journal=] |volume=108 |issue=34 |pages=13995–13998 |bibcode=2011PNAS..10813995C |doi=10.1073/pnas.1106493108 |pmc=3161613 |pmid=21836052 |doi-access=free}}</ref><ref name="Steigerwald">{{cite web |url=http://www.nasa.gov/topics/solarsystem/features/dna-meteorites.html |title=NASA Researchers: DNA Building Blocks Can Be Made in Space |last=Steigerwald |first=John |date=8 August 2011 |work=] |publisher=NASA |access-date=23 June 2015 |url-status=live |archive-url=https://web.archive.org/web/20150623004556/http://www.nasa.gov/topics/solarsystem/features/dna-meteorites.html |archive-date=23 June 2015}}</ref> The ] permeating the universe contains complex organics ("amorphous organic solids with a mixed ]–] structure") that could be created rapidly by stars.<ref name="Nature-20111026">{{cite journal |last1=Kwok |first1=Sun |author-link=Sun Kwok |last2=Zhang |first2=Yong |date=3 November 2011 |title=Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features |journal=] |volume=479 |issue=7371 |pages=80–83 |bibcode=2011Natur.479...80K |doi=10.1038/nature10542 |pmid=22031328 |s2cid=4419859}}</ref> ], a sugar molecule and RNA precursor, has been detected in regions of space including around ]s and on meteorites.<ref>{{cite journal |last1=Jørgensen |first1=Jes K. |last2=Favre |first2=Cécile |last3=Bisschop |first3=Suzanne E. |last4=Bourke |first4=Tyler L. |last5=van Dishoeck |first5=Ewine F. |author-link5=Ewine van Dishoeck |last6=Schmalzl |first6=Markus |display-authors=3 |date=2012 |title=Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA |url=http://www.eso.org/public/archives/releases/sciencepapers/eso1234/eso1234a.pdf |journal=] |volume=757 |issue=1 |arxiv=1208.5498 |bibcode=2012ApJ...757L...4J |doi=10.1088/2041-8205/757/1/L4 |access-date=2015-06-23 |page=L4 |s2cid=14205612 |url-status=live |archive-url=https://web.archive.org/web/20150924021240/http://www.eso.org/public/archives/releases/sciencepapers/eso1234/eso1234a.pdf |archive-date=24 September 2015}}</ref><ref name="PNAS-20191113">{{cite journal |last1=Furukawa |first1=Yoshihiro |last2=Chikaraishi |first2=Yoshito |last3=Ohkouchi |first3=Naohiko |last4=Ogawa |first4=Nanako O. |last5=Glavin |first5=Daniel P. |last6=Dworkin |first6=Jason P. |last7=Abe |first7=Chiaki |last8=Nakamura |first8=Tomoki |display-authors=3 |date=2019-11-13 |title=Extraterrestrial ribose and other sugars in primitive meteorites |journal=] |volume=116 |issue=49 |pages=24440–24445 |doi=10.1073/pnas.1907169116 |pmid=31740594 |pmc=6900709 |bibcode=2019PNAS..11624440F |doi-access=free}}</ref> | |||
It has been shown that early error prone translation machinery can be stable against an error catastrophe of the type that had been envisaged as problematical known as "Orgel's paradox" caused by catalytic activities that would be disruptive.<ref>{{cite journal |last=Hoffmann |first=Geoffrey W. |authorlink=Geoffrey W. Hoffmann |date=25 June 1974 |title=On the origin of the genetic code and the stability of the translation apparatus |journal=] |location=Amsterdam, the Netherlands |publisher=Elsevier |volume=86 |issue=2 |pages=349–362 |doi=10.1016/0022-2836(74)90024-2 |issn=0022-2836 |pmid=4414916}}</ref><ref>{{cite journal |last=Orgel |first=Leslie E. |date=April 1963 |title=The Maintenance of the Accuracy of Protein Synthesis and its Relevance to Ageing |journal=Proc. Natl. Acad. Sci. U.S.A. |location=Washington, D.C. |publisher=National Academy of Sciences |volume=49 |issue=4 |pages=517–521 |bibcode=1963PNAS...49..517O |doi=10.1073/pnas.49.4.517 |issn=0027-8424 |pmc=299893 |pmid=13940312}}</ref><ref>{{cite journal |last=Hoffmann |first=Geoffrey W. |title=The Stochastic Theory of the Origin of the Genetic Code |date=October 1975 |journal=] |location=Palo Alto, CA |publisher=] |volume=26 |pages=123–144 |bibcode=1975ARPC...26..123H |doi=10.1146/annurev.pc.26.100175.001011 |issn=0066-426X}}</ref> | |||
=== Laboratory synthesis === | |||
===Information theory=== | |||
A theory that speaks to the origin of life on Earth and other rocky planets posits life as an ] in which information content grows because of selection. Life must start with minimum possible information, or minimum possible departure from thermodynamic equilibrium, and it requires thermodynamically free energy accessible by means of its information content. The most benign circumstances, minimum ] variations with abundant free energy, suggest the ] in the first few kilometers of the surface. Free energy is derived from the condensed products of the chemical reactions taking place in the cooling nebula.<ref>{{cite journal| last=Colgate| first=S. A.| last2=Rasmussen| first2=S.| last3=Solem| first3=J. C.| last4=Lackner| first4=K.| year=2003| title=An astrophysical basis for a universal origin of life| journal=Advances in Complex Systems| volume=6| issue=4| pages=487–505 |url=http://www.worldscientific.com/doi/abs/10.1142/S0219525903001079| doi=10.1142/s0219525903001079}}</ref> | |||
As early as the 1860s, experiments demonstrated that biologically relevant molecules can be produced from interaction of simple carbon sources with abundant inorganic catalysts. The spontaneous formation of complex polymers from abiotically generated monomers under the conditions posited by the "soup" theory is not straightforward. Besides the necessary basic organic monomers, compounds that would have prohibited the formation of polymers were also formed in high concentration during the Miller–Urey and ] experiments.<ref>{{cite journal |last1=Oró |first1=Joan |last2=Kimball |first2=Aubrey P. |date=February 1962 |title=Synthesis of purines under possible primitive earth conditions: II. Purine intermediates from hydrogen cyanide |journal=] |volume=96 |issue=2 |pages=293–313 |doi=10.1016/0003-9861(62)90412-5 |pmid=14482339}}</ref> Biology uses essentially 20 amino acids for its coded protein enzymes, representing a very small subset of the structurally possible products. Since life tends to use whatever is available, an explanation is needed for why the set used is so small.<ref>{{cite journal |last1=Cleaves II |first1=Henderson |year=2010 |title=The origin of the biologically coded amino acids |journal=] |volume=263 |issue=4 |pages=490–498 |doi=10.1016/j.jtbi.2009.12.014 |pmid=20034500 |bibcode=2010JThBi.263..490C}}</ref> Formamide is attractive as a medium that potentially provided a source of amino acid derivatives from simple aldehyde and nitrile feedstocks.<ref>{{cite journal|author=Green, N. J., Russell, D. A., Tanner, S. H., Sutherland, J. D.|title=Prebiotic Synthesis of N-Formylaminonitriles and Derivatives in Formamide|journal=Journal of the American Chemical Society|year=2023|volume=145|issue=19 |pages=10533–10541|doi=10.1021/jacs.2c13306|pmid=37146260|doi-access=free|pmc=10197134|bibcode=2023JAChS.14510533G }}</ref> | |||
=== Homochirality === | |||
{{Main|Homochirality}} | |||
==== Sugars ==== | |||
Homochirality refers to the geometric property of some materials that are composed of ] units. Chiral refers to nonsuperimposable 3D forms that are mirror images of one another, as are left and right hands. Living organisms use molecules that have the same chirality ("handedness"): with almost no exceptions,<ref>{{harvnb|Chaichian|Rojas|Tureanu|2014|pp=353–364}}</ref> amino acids are left-handed while nucleotides and ] are right-handed. Chiral molecules can be synthesized, but in the absence of a chiral source or a chiral ], they are formed in a 50/50 mixture of both ]s (called a racemic mixture). Known mechanisms for the production of non-racemic mixtures from racemic starting materials include: asymmetric physical laws, such as the ]; asymmetric environments, such as those caused by ] light, ], or the Earth's rotation; and statistical fluctuations during racemic synthesis.<ref name="Plasson2007">{{cite journal |last1=Plasson |first1=Raphaël |last2=Kondepudi |first2=Dilip K. |last3=Bersini |first3=Hugues |last4=Commeyras |first4=Auguste |last5=Asakura |first5=Kouichi |display-authors=3 |date=August 2007 |title=Emergence of homochirality in far-from-equilibrium systems: Mechanisms and role in prebiotic chemistry |journal=] |location=Hoboken, NJ |publisher=] |volume=19 |issue=8 |pages=589–600 |doi=10.1002/chir.20440 |issn=0899-0042 |pmid=17559107}} "Special Issue: Proceedings from the Eighteenth International Symposium on Chirality (ISCD-18), Busan, Korea, 2006"</ref> | |||
] | |||
Once established, chirality would be selected for.<ref>{{cite journal |last=Clark |first=Stuart |authorlink=Stuart Clark (author) |date=July–August 1999 |title=Polarized Starlight and the Handedness of Life |journal=] |location=Research Triangle Park, NC |publisher=] |volume=87 |issue=4 |page=336 |bibcode=1999AmSci..87..336C |doi=10.1511/1999.4.336 |issn=0003-0996}}</ref> A small bias (]) in the population can be amplified into a large one by ], such as in the ].<ref>{{cite journal |last1=Shibata |first1=Takanori |last2=Morioka |first2=Hiroshi |last3=Hayase |first3=Tadakatsu |last4=Choji |first4=Kaori |last5=Soai |first5=Kenso |display-authors=3 |date=17 January 1996 |title=Highly Enantioselective Catalytic Asymmetric Automultiplication of Chiral Pyrimidyl Alcohol |journal=Journal of the American Chemical Society |location=Washington, D.C. |publisher=American Chemical Society |volume=118 |issue=2 |pages=471–472 |doi=10.1021/ja953066g |issn=0002-7863}}</ref> In asymmetric autocatalysis, the catalyst is a chiral molecule, which means that a chiral molecule is catalysing its own production. An initial enantiomeric excess, such as can be produced by polarized light, then allows the more abundant enantiomer to outcompete the other.<ref name="Soai2001">{{cite journal |last1=Soai |first1=Kenso |last2=Sato |first2=Itaru |last3=Shibata |first3=Takanori |year=2001 |title=Asymmetric autocatalysis and the origin of chiral homogeneity in organic compounds |journal=The Chemical Record |location=Hoboken, NJ |publisher=John Wiley & Sons on behalf of The Japan Chemical Journal Forum |volume=1 |issue=4 |pages=321–332 |doi=10.1002/tcr.1017 |issn=1528-0691 |pmid=11893072}}</ref> | |||
] showed in 1861 that the ] created sugars including tetroses, pentoses, and hexoses when ] is heated under basic conditions with divalent metal ions like calcium. R. Breslow proposed that the reaction was autocatalytic in 1959.<ref>{{cite journal |last=Breslow |first=R. |year=1959 |title=On the Mechanism of the Formose Reaction |journal=] |volume=1 |issue=21 |pages=22–26 |doi=10.1016/S0040-4039(01)99487-0}}</ref> | |||
Clark has suggested that homochirality may have started in outer space, as the studies of the amino acids on the ] showed that ] is more than twice as frequent as its D form, and ] was more than three times prevalent than its D counterpart. Various chiral crystal surfaces can also act as sites for possible concentration and assembly of chiral monomer units into macromolecules.<ref>{{harvnb|Hazen|2005}}</ref> Compounds found on meteorites suggest that the chirality of life derives from abiogenic synthesis, since amino acids from meteorites show a left-handed bias, whereas sugars show a predominantly right-handed bias, the same as found in living organisms.<ref name=StarStuff>{{cite journal |last=Mullen |first=Leslie |date=5 September 2005 |title=Building Life from Star-Stuff |url=http://www.astrobio.net/news-exclusive/building-life-from-star-stuff/ |journal=Astrobiology Magazine |location=New York |publisher=NASA |accessdate=2015-06-15}}</ref> | |||
==== Nucleobases ==== | |||
== Self-enclosement, reproduction, duplication and the RNA world == | |||
Nucleobases, such as guanine and adenine, can be synthesized from simple carbon and nitrogen sources, such as ] (HCN) and ammonia.<ref>{{cite journal |last=Oró |first=Joan |author-link=Joan Oró |date=16 September 1961 |title=Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions |journal=] |volume=191 |issue=4794 |pages=1193–1194 |bibcode=1961Natur.191.1193O |doi=10.1038/1911193a0 |pmid=13731264 |s2cid=4276712}}</ref> ] produces all four ribonucleotides when warmed with terrestrial minerals. Formamide is ubiquitous in the Universe, produced by the reaction of water and HCN. It can be concentrated by the evaporation of water.<ref name="Saladino2012">{{cite journal |last1=Saladino |first1=Raffaele |last2=Crestini |first2=Claudia |last3=Pino |first3=Samanta |last4=Costanzo |first4=Giovanna |last5=Di Mauro |first5=Ernesto |display-authors=3 |date=March 2012 |title=Formamide and the origin of life. |journal=] |volume=9 |issue=1 |pages=84–104 |bibcode=2012PhLRv...9...84S |doi=10.1016/j.plrev.2011.12.002 |pmid=22196896 |hdl=2108/85168 |url=https://art.torvergata.it/bitstream/2108/85168/1/PoLRev%202012.pdf |hdl-access=free |access-date=29 August 2019 |archive-date=27 January 2023 |archive-url=https://web.archive.org/web/20230127162359/https://art.torvergata.it/bitstream/2108/85168/1/PoLRev%202012.pdf |url-status=live }}</ref><ref name="Saladino2012b">{{cite journal |last1=Saladino |first1=Raffaele |last2=Botta |first2=Giorgia |last3=Pino |first3=Samanta |last4=Costanzo |first4=Giovanna |last5=Di Mauro |first5=Ernesto |display-authors=3 |date=July 2012 |title=From the one-carbon amide formamide to RNA all the steps are prebiotically possible |journal=] |volume=94 |issue=7 |pages=1451–1456 |doi=10.1016/j.biochi.2012.02.018 |pmid=22738728 |hdl=11573/515604}}</ref> HCN is poisonous only to ]s (]s and aerobic bacteria), which did not yet exist. It can play roles in other chemical processes such as the synthesis of the amino acid glycine.<ref name="Follmann2009"/> | |||
=== Protocells === | |||
DNA and RNA components including uracil, cytosine and thymine can be synthesized under outer space conditions, using starting chemicals such as pyrimidine found in meteorites. Pyrimidine may have been formed in ] stars or in interstellar dust and gas clouds.<ref name="NASA-20150303">{{cite web |url=http://www.nasa.gov/content/nasa-ames-reproduces-the-building-blocks-of-life-in-laboratory |title=NASA Ames Reproduces the Building Blocks of Life in Laboratory |editor-last=Marlaire |editor-first=Ruth |date=3 March 2015 |work=Ames Research Center |publisher=NASA |access-date=5 March 2015 |url-status=live |archive-url=https://web.archive.org/web/20150305083306/http://www.nasa.gov/content/nasa-ames-reproduces-the-building-blocks-of-life-in-laboratory/ |archive-date=5 March 2015}}</ref> All four RNA-bases may be synthesized from formamide in high-energy density events like extraterrestrial impacts.<ref>{{cite journal |last1=Ferus |first1=Martin |last2=Nesvorný |first2=David |last3=Šponer |first3=Jiří |last4=Kubelík |first4=Petr |last5=Michalčíková |first5=Regina |last6=Shestivská |first6=Violetta |last7=Šponer |first7=Judit E. |last8=Civiš |first8=Svatopluk |display-authors=3 |year=2015 |title=High-energy chemistry of formamide: A unified mechanism of nucleobase formation |journal=] |volume=112 |issue=3 |pages=657–662 |doi=10.1073/pnas.1412072111 |pmid=25489115 |bibcode=2015PNAS..112..657F |pmc=4311869 |doi-access=free}}</ref> | |||
{{Main|Protocell}} | |||
]s form spontaneously in solution: the ] (a closed bilayer), the ] and the bilayer.]] | |||
A protocell is a self-organized, self-ordered, spherical collection of ]s proposed as a stepping-stone to the origin of life.<ref name="Chen 2010">{{cite journal |first1=Irene A. |last1=Chen |first2=Peter |last2=Walde |title=From Self-Assembled Vesicles to Protocells |url=http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2890201/pdf/cshperspect-ORI-a002170.pdf |format=PDF |journal=Cold Spring Harbor Perspectives in Biology |location=Cold Spring Harbor, NY |publisher=Cold Spring Harbor Laboratory Press |date=July 2010 |volume=2 |issue=7 |page=a002170 |doi=10.1101/cshperspect.a002170 |issn=1943-0264 |pmc=2890201 |pmid=20519344 |accessdate=2015-06-15}}</ref> A central question in evolution is how simple protocells first arose and differed in reproductive contribution to the following generation driving the evolution of life. Although a functional protocell has not yet been achieved in a laboratory setting, there are scientists who think the goal is well within reach.<ref name="Exploring">{{cite web |url=http://exploringorigins.org/protocells.html |title=Exploring Life's Origins: Protocells |website=Exploring Life's Origins: A Virtual Exhibit |publisher=National Science Foundation |location=Arlington County, VA |accessdate=2014-03-18}}</ref><ref name="Chen 2006">{{cite journal |last=Chen |first=Irene A. |date=8 December 2006 |title=The Emergence of Cells During the Origin of Life |url=http://www.sciencemag.org/content/314/5805/1558.full |journal=Science |location=Washington, D.C. |publisher=American Association for the Advancement of Science |volume=314 |issue=5805 |pages=1558–1559 |doi=10.1126/science.1137541 |issn=0036-8075 |pmid=17158315 |accessdate=2015-06-15}}</ref><ref name="Discover 2004">{{cite journal |last=Zimmer |first=Carl |authorlink=Carl Zimmer |date=26 June 2004 |title=What Came Before DNA? |url=http://discovermagazine.com/2004/jun/cover |journal=Discover |location=Waukesha, WI |publisher=Kalmbach Publishing |issn=0274-7529}}</ref> | |||
Other pathways for synthesizing bases from inorganic materials have been reported.<ref name="Basile1984">{{cite journal |last1=Basile |first1=Brenda |last2=Lazcano |first2=Antonio |author2-link=Antonio Lazcano |last3=Oró |first3=Joan |year=1984 |title=Prebiotic syntheses of purines and pyrimidines |journal=] |volume=4 |issue=12 |pages=125–131 |bibcode=1984AdSpR...4l.125B |doi=10.1016/0273-1177(84)90554-4 |pmid=11537766}}</ref> Freezing temperatures are advantageous for the synthesis of purines, due to the concentrating effect for key precursors such as hydrogen cyanide.<ref>{{cite journal |last=Orgel |first=Leslie E. |date=August 2004 |title=Prebiotic Adenine Revisited: Eutectics and Photochemistry |journal=] |volume=34 |issue=4 |pages=361–369 |bibcode=2004OLEB...34..361O |doi=10.1023/B:ORIG.0000029882.52156.c2 |pmid=15279171 |s2cid=4998122}}</ref> However, while adenine and guanine require freezing conditions for synthesis, cytosine and uracil may require boiling temperatures.<ref>{{cite journal |last1=Robertson |first1=Michael P. |last2=Miller |first2=Stanley L. |date=29 June 1995 |title=An efficient prebiotic synthesis of cytosine and uracil |journal=Nature |volume=375 |issue=6534 |pages=772–774 |bibcode=1995Natur.375..772R |doi=10.1038/375772a0 |pmid=7596408 |s2cid=4351012}}</ref> Seven amino acids and eleven types of nucleobases formed in ice when ammonia and ] were left in a freezer for 25 years.<ref>{{cite journal |last=Fox |first=Douglas |date=1 February 2008 |title=Did Life Evolve in Ice? |journal=] |url=https://www.discovermagazine.com/planet-earth/did-life-evolve-in-ice |access-date=2008-07-03 |url-status=live |archive-url=https://web.archive.org/web/20080630043228/http://discovermagazine.com/2008/feb/did-life-evolve-in-ice |archive-date=30 June 2008}}</ref><ref>{{cite journal |last1=Levy |first1=Matthew |last2=Miller |first2=Stanley L. |last3=Brinton |first3=Karen |last4=Bada |first4=Jeffrey L. |author4-link=Jeffrey L. Bada |date=June 2000 |title=Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions |journal=] |volume=145 |issue=2 |pages=609–613 |bibcode=2000Icar..145..609L |doi=10.1006/icar.2000.6365 |pmid=11543508}}</ref> S-]s (alternative nucleobases), pyrimidines including cytosine and uracil, and adenine can be synthesized by subjecting a urea solution to freeze-thaw cycles under a reductive atmosphere, with spark discharges as an energy source.<ref>{{cite journal |last1=Menor-Salván |first1=César |last2=Ruiz-Bermejo |first2=Marta |last3=Guzmán |first3=Marcelo I. |last4=Osuna-Esteban |first4=Susana |last5=Veintemillas-Verdaguer |first5=Sabino |display-authors=3 |date=20 April 2009 |title=Synthesis of Pyrimidines and Triazines in Ice: Implications for the Prebiotic Chemistry of Nucleobases |journal=] |volume=15 |issue=17 |pages=4411–4418 |doi=10.1002/chem.200802656 |pmid=19288488}}</ref> The explanation given for the unusual speed of these reactions at such a low temperature is ], which crowds impurities in microscopic pockets of liquid within the ice, causing the molecules to collide more often.<ref>{{cite journal |last1=Roy |first1=Debjani |last2=Najafian |first2=Katayoun |last3=von Ragué Schleyer |first3=Paul |author-link3=Paul von Ragué Schleyer |date=30 October 2007 |title=Chemical evolution: The mechanism of the formation of adenine under prebiotic conditions |journal=] |volume=104 |issue=44 |pages=17272–17277 |bibcode=2007PNAS..10417272R |doi=10.1073/pnas.0708434104 |pmc=2077245 |pmid=17951429 |doi-access=free}}</ref> | |||
Self-assembled ] are essential components of primitive cells.<ref name="Chen 2010" /> The ] requires that the Universe move in a direction in which disorder (or ]) increases, yet life is distinguished by its great degree of organization. Therefore, a boundary is needed to separate ] from non-living matter.<ref name="SciAm 2007">{{cite journal |last=Shapiro |first=Robert |authorlink=Robert Shapiro (chemist) |date=June 2007 |title=A Simpler Origin for Life |url=http://www.scientificamerican.com/article/a-simpler-origin-for-life/ |journal=Scientific American |location=Stuttgart |publisher=Georg von Holtzbrinck Publishing Group |volume=296 |issue=6 |pages=46–53 |doi=10.1038/scientificamerican0607-46 |issn=0036-8733 |pmid=17663224 |accessdate=2015-06-15}}</ref> Researchers Irene A. Chen and Jack W. Szostak amongst others, suggest that simple physicochemical properties of elementary protocells can give rise to essential cellular behaviors, including primitive forms of differential reproduction competition and energy storage. Such cooperative interactions between the membrane and its encapsulated contents could greatly simplify the transition from simple replicating molecules to true cells.<ref name="Chen 2006" /> Furthermore, competition for membrane molecules would favor stabilized membranes, suggesting a selective advantage for the evolution of cross-linked fatty acids and even the ]s of today.<ref name="Chen 2006" /> Such ] would allow for metabolism within the membrane, the exchange of small molecules but the prevention of passage of large substances across it.<ref>{{harvnb|Chang|2007}}</ref> The main advantages of encapsulation include the increased ] of the contained cargo within the capsule and the storage of energy in the form of a ]. | |||
==== Peptides ==== | |||
A 2012 study led by Armen Y. Mulkidjanian of Germany's ], suggests that inland pools of condensed and cooled geothermal vapour have the ideal characteristics for the origin of life.<ref name="Switek 2012">{{cite news |last=Switek |first=Brian |date=13 February 2012 |title=Debate bubbles over the origin of life |work=Nature |location=London |publisher=Nature Publishing Group |doi=10.1038/nature.2012.10024 |issn=0028-0836}}</ref> Scientists confirmed in 2002 that by adding a ] clay to a solution of fatty acid micelles (lipid spheres), the clay sped up the rate of vesicles formation 100-fold.<ref name="Discover 2004" /> | |||
Prebiotic peptide synthesis is proposed to have occurred through a number of possible routes. Some center on high temperature/concentration conditions in which condensation becomes energetically favorable, while others focus on the availability of plausible prebiotic condensing agents.<ref name=":0">{{Cite journal |last1=Frenkel-Pinter |first1=Moran |last2=Samanta |first2=Mousumi |last3=Ashkenasy |first3=Gonen |last4=Leman |first4=Luke J. |date=2020-06-10 |title=Prebiotic Peptides: Molecular Hubs in the Origin of Life |url=https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00664 |journal=Chemical Reviews |volume=120 |issue=11 |pages=4707–4765 |doi=10.1021/acs.chemrev.9b00664 |pmid=32101414 |bibcode=2020ChRv..120.4707F |issn=0009-2665}}</ref>{{Explain|date=April 2024}} | |||
Experimental evidence for the formation of peptides in uniquely concentrated environments is bolstered by work suggesting that wet-dry cycles and the presence of specific salts can greatly increase spontaneous condensation of glycine into poly-glycine chains.<ref>{{Cite journal |title=Prebiotic condensation through wet–dry cycling regulated by deliquescence |doi=10.1038/s41467-019-11834-1 |pmc=6778215 |pmid=31586058 | date=2019 | last1=Campbell | first1=Thomas D. | last2=Febrian | first2=Rio | last3=McCarthy | first3=Jack T. | last4=Kleinschmidt | first4=Holly E. | last5=Forsythe | first5=Jay G. | last6=Bracher | first6=Paul J. | journal=Nature Communications | volume=10 | issue=1 | page=4508 |bibcode=2019NatCo..10.4508C }}</ref> Other work suggests that while mineral surfaces, such as those of pyrite, calcite, and rutile catalyze peptide condensation, they also catalyze their hydrolysis. The authors suggest that additional chemical activation or coupling would be necessary to produce peptides at sufficient concentrations. Thus, mineral surface catalysis, while important, is not sufficient alone for peptide synthesis.<ref>{{Cite journal |last1=Marshall-Bowman |first1=Karina |last2=Ohara |first2=Shohei |last3=Sverjensky |first3=Dimitri A. |last4=Hazen |first4=Robert M. |last5=Cleaves |first5=H. James |date=October 2010 |title=Catalytic peptide hydrolysis by mineral surface: Implications for prebiotic chemistry |journal=Geochimica et Cosmochimica Acta |volume=74 |issue=20 |pages=5852–5861 |doi=10.1016/j.gca.2010.07.009 |bibcode=2010GeCoA..74.5852M |issn=0016-7037}}</ref> | |||
Another protocell model is the ]. First synthesized in 1963 from simple minerals and basic organics while exposed to sunlight, it is still reported to have some metabolic capabilities, the presence of ], amino acids, phospholipids, ]s and RNA-like molecules.<ref name="Grote 2011">{{cite journal |last=Grote |first=Mathias |date=September 2011 |title=''Jeewanu'', or the 'particles of life' |url=http://www.ias.ac.in/jbiosci/grote_3677.pdf |format=PDF |journal=] |location=Bangalore, India |publisher=]; Springer |volume=36 |issue=4 |pages=563–570 |doi=10.1007/s12038-011-9087-0 |issn=0250-5991 |pmid=21857103 |accessdate=2015-06-15}}</ref><ref name="Gupta 2013">{{cite journal |last1=Gupta |first1=V. K. |last2=Rai |first2=R. K. |date=August 2013 |title=Histochemical localisation of RNA-like material in photochemically formed self-sustaining, abiogenic supramolecular assemblies 'Jeewanu' |url=http://www.academia.edu/9439398/Histochemical_Localisation_of_RNA_like_material_in_photochemically_formed_self-sustaining_abiogenic_supramolecular_assemblis_Jeewanu_ |journal=International Research Journal of Science & Engineering |location=Amravati, India |volume=1 |issue=1 |pages=1–4 |issn=2322-0015 |accessdate=2015-06-15}}</ref> However, the nature and properties of the Jeewanu remains to be clarified. | |||
Many prebiotically plausible condensing/activating agents have been identified, including the following: cyanamide, dicyanamide, dicyandiamide, diaminomaleonitrile, urea, trimetaphosphate, NaCl, CuCl<sub>2,</sub> (Ni,Fe)S, CO, carbonyl sulfide (COS), carbon disulfide (CS<sub>2</sub>)<sub>,</sub> SO<sub>2,</sub> and diammonium phosphate (DAP).<ref name=":0" /> | |||
Electrostatic interactions induced by short, positively charged, hydrophobic peptides containing 7 amino acids in length or fewer, can attach RNA to a vesicle membrane, the basic cell membrane.<ref>{{cite news |last=Welter |first=Kira |date=10 August 2015 |title=Peptide glue may have held first protocell components together |url=http://www.rsc.org/chemistryworld/2015/08/peptide-glue-rna-may-have-held-first-protocells-together |work=Chemistry World |type=News |location=London |publisher=Royal Society of Chemistry |issn=1473-7604 |accessdate=2015-08-29}} | |||
* {{cite journal |last1=Kamat |first1=Neha P. |last2=Tobé |first2=Sylvia |last3=Hill |first3=Ian T. |last4=Szostak |first4=Jack W. |authorlink4=Jack W. Szostak |url=http://onlinelibrary.wiley.com/doi/10.1002/anie.201505742/abstract |title=Electrostatic Localization of RNA to Protocell Membranes by Cationic Hydrophobic Peptides |date=29 July 2015 |journal=Angewandte Chemie International Edition |location=Weinheim, Germany |publisher=Wiley-VCH on behalf of the German Chemical Society |doi=10.1002/anie.201505742 |issn=1433-7851}} "Early View (Online Version of Record published before inclusion in an issue)"</ref> | |||
An experiment reported in 2024 used a sapphire substrate with a web of thin cracks under a heat flow, similar to the environment of ], as a mechanism to separate and concentrate prebiotically relevant building blocks from a dilute mixture, purifying their concentration by up to three orders of magnitude. The authors propose this as a plausible model for the origin of complex biopolymers.<ref>{{Cite journal |last1=Matreux |first1=Thomas |last2=Aikkila |first2=Paula |last3=Scheu |first3=Bettina |last4=Braun |first4=Dieter |last5=Mast |first5=Christof B. |date=April 2024 |title=Heat flows enrich prebiotic building blocks and enhance their reactivity |journal=Nature |volume=628 |issue=8006 |pages=110–116 |doi=10.1038/s41586-024-07193-7 |issn=1476-4687 |pmc=10990939 |pmid=38570715|bibcode=2024Natur.628..110M }}</ref> This presents another physical process that allows for concentrated peptide precursors to combine in the right conditions. A similar role of increasing amino acid concentration has been suggested for clays as well.<ref>{{Cite journal |last=Paecht-Horowitz |first=Mella |date=1974-01-01 |title=The possible role of clays in prebiotic peptide synthesis |journal=Origins of Life |volume=5 |issue=1 |pages=173–187 |doi=10.1007/BF00927022 |pmid=4842069 |bibcode=1974OrLi....5..173P |issn=1573-0875}}</ref> | |||
While all of these scenarios involve the condensation of amino acids, the prebiotic synthesis of peptides from simpler molecules such as CO, NH<sub>3</sub> and C, skipping the step of amino acid formation, is very efficient.<ref>{{Cite journal |last1=Krasnokutski |first1=S. A. |last2=Chuang |first2=K.-J. |last3=Jäger |first3=C. |last4=Ueberschaar |first4=N. |last5=Henning |first5=Th. |date=2022-02-10 |title=A pathway to peptides in space through the condensation of atomic carbon |url=https://www.nature.com/articles/s41550-021-01577-9 |journal=Nature Astronomy |language=en |volume=6 |issue=3 |pages=381–386 |doi=10.1038/s41550-021-01577-9 |arxiv=2202.12170 |bibcode=2022NatAs...6..381K |issn=2397-3366}}</ref><ref>{{Cite journal |last1=Krasnokutski |first1=Serge A. |last2=Jäger |first2=Cornelia |last3=Henning |first3=Thomas |last4=Geffroy |first4=Claude |last5=Remaury |first5=Quentin B. |last6=Poinot |first6=Pauline |date=2024-04-19 |title=Formation of extraterrestrial peptides and their derivatives |journal=Science Advances |language=en |volume=10 |issue=16 |pages=eadj7179 |doi=10.1126/sciadv.adj7179 |issn=2375-2548 |pmc=11023503 |pmid=38630826|arxiv=2405.00744 |bibcode=2024SciA...10J7179K }}</ref> | |||
== Producing suitable vesicles == | |||
{{further|Gard model|Self-organization#Biology|Cellularization}} | |||
]s form spontaneously by ] in solution: the ] (a closed bilayer), the ] and the bilayer.]] | |||
The largest unanswered question in evolution is how simple protocells first arose and differed in reproductive contribution to the following generation, thus initiating the evolution of life. The ] theory postulates that the first self-replicating object was ]-like.<ref>{{cite web |url=http://www.weizmann.ac.il/molgen/Lancet/research/prebiotic-evolution |title=Systems Prebiology-Studies of the origin of Life |last=Lancet |first=Doron |date=30 December 2014 |website=The Lancet Lab |publisher=Department of Molecular Genetics; ] |location=Rehovot, Israel |access-date=26 June 2015 |url-status=live |archive-url=https://web.archive.org/web/20150626180507/http://www.weizmann.ac.il/molgen/Lancet/research/prebiotic-evolution |archive-date=26 June 2015}}</ref><ref>{{cite journal |last1=Segré |first1=Daniel |last2=Ben-Eli |first2=Dafna |last3=Deamer |first3=David W. |last4=Lancet |first4=Doron |date=February 2001 |title=The Lipid World |url=http://www.weizmann.ac.il/molgen/Lancet/sites/molgen.Lancet/files/uploads/segre_lipid_world.pdf |journal=] |volume=31 |issue=1–2 |pages=119–145 |doi=10.1023/A:1006746807104 |pmid=11296516 |bibcode=2001OLEB...31..119S |s2cid=10959497 |url-status=live |archive-url=https://web.archive.org/web/20150626225745/http://www.weizmann.ac.il/molgen/Lancet/sites/molgen.Lancet/files/uploads/segre_lipid_world.pdf |archive-date=26 June 2015}}</ref> Phospholipids form ]s in water while under agitation—the same structure as in cell membranes. These molecules were not present on early Earth, but other ] long-chain molecules also form membranes. These bodies may expand by insertion of additional lipids, and may spontaneously split into two ] of similar size and composition. Lipid bodies may have provided sheltering envelopes for information storage, allowing the evolution and preservation of polymers like RNA that store information. Only one or two types of amphiphiles have been studied which might have led to the development of vesicles.<ref name="Chen 2010"/> There is an enormous number of possible arrangements of lipid bilayer membranes, and those with the best reproductive characteristics would have converged toward a hypercycle reaction,<ref>{{cite journal |last1=Eigen |first1=Manfred |author-link1=Manfred Eigen |last2=Schuster |first2=Peter |author-link2=Peter Schuster |date=November 1977 |title=The Hypercycle. A Principle of Natural Self-Organization. Part A: Emergence of the Hypercycle |url=http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1977Naturwissenschaften64.pdf |journal=] |volume=64 |issue=11 |pages=541–65 |bibcode=1977NW.....64..541E |doi=10.1007/bf00450633 |pmid=593400 |s2cid=42131267 |archive-url=https://web.archive.org/web/20160303194728/http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1977Naturwissenschaften64.pdf |archive-date=3 March 2016 |ref=none}} | |||
* {{cite journal |last1=Eigen |first1=Manfred |author1-link=Manfred Eigen |last2=Schuster |first2=Peter |author2-link=Peter Schuster |year=1978 |title=The Hypercycle. A Principle of Natural Self-Organization. Part B: The Abstract Hypercycle |url=http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1978Naturwissenschaften65a.pdf |journal=] |volume=65 |issue=1 |pages=7–41 |bibcode=1978NW.....65....7E |doi=10.1007/bf00420631 |s2cid=1812273 |archive-url=https://web.archive.org/web/20160303203325/http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1978Naturwissenschaften65a.pdf |archive-date=3 March 2016 |ref=none}} | |||
* {{cite journal |last1=Eigen |first1=Manfred |author1-link=Manfred Eigen |last2=Schuster |first2=Peter |author-link2=Peter Schuster |date=July 1978 |title=The Hypercycle. A Principle of Natural Self-Organization. Part C: The Realistic Hypercycle |url=http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1978Naturwissenschaften65b.pdf |journal=] |volume=65 |issue=7 |pages=341–369 |bibcode=1978NW.....65..341E |doi=10.1007/bf00439699 |s2cid=13825356 |archive-url=https://web.archive.org/web/20160616180402/http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1978Naturwissenschaften65b.pdf |archive-date=16 June 2016 |ref=none}}</ref><ref>{{cite journal |last1=Markovitch |first1=Omer |last2=Lancet |first2=Doron |date=Summer 2012 |title=Excess Mutual Catalysis Is Required for Effective Evolvability |journal=] |volume=18 |issue=3 |pages=243–266 |doi=10.1162/artl_a_00064 |pmid=22662913 |s2cid=5236043 |doi-access=free}}</ref> a positive ] composed of two mutual catalysts represented by a membrane site and a specific compound trapped in the vesicle. Such site/compound pairs are transmissible to the daughter vesicles leading to the emergence of distinct ] of vesicles, which would have allowed ].<ref>{{cite journal |last=Tessera |first=Marc |year=2011 |title=Origin of Evolution ''versus'' Origin of Life: A Shift of Paradigm |journal=] |volume=12 |issue=6 |pages=3445–3458 |doi=10.3390/ijms12063445 |pmc=3131571 |pmid=21747687 |doi-access=free}} Special Issue: "Origin of Life 2011"</ref> | |||
A ] is a self-organized, self-ordered, spherical collection of lipids proposed as a stepping-stone to the origin of life.<ref name="Chen 2010">{{cite journal |first1=Irene A. |last1=Chen |first2= Peter |last2=Walde |title=From Self-Assembled Vesicles to Protocells |journal=] |date=July 2010 |volume=2 |issue=7 |page=a002170 |doi= 10.1101/cshperspect.a002170 |pmc=2890201 |pmid=20519344}}</ref> A functional protocell has (as of 2014) not yet been achieved in a laboratory setting.<ref name="Exploring">{{cite web |title=Protocells |url=http://exploringorigins.org/protocells.html |url-status=live |archive-url=https://web.archive.org/web/20140228083459/http://exploringorigins.org/protocells.html |archive-date=28 February 2014 |access-date=September 13, 2023 |website=Exploring Life's Origins: A Virtual Exhibit |publisher=] |location=Arlington County, Virginia}}</ref><ref name="Chen 2006">{{cite journal |last=Chen |first=Irene A. |date=8 December 2006 |title=The Emergence of Cells During the Origin of Life |journal=] |volume=314 |issue=5805 |pages=1558–1559 |doi=10.1126/science.1137541 |pmid=17158315 |doi-access=free}}</ref><ref name="Discover 2004">{{cite magazine |last=Zimmer |first=Carl |author-link=Carl Zimmer |date=26 June 2004 |title=What Came Before DNA? |url=https://www.discovermagazine.com/planet-earth/what-came-before-dna |url-status=live |archive-url=https://web.archive.org/web/20140319001351/http://discovermagazine.com/2004/jun/cover |archive-date=19 March 2014 |journal=]}}</ref> Self-assembled ] are essential components of primitive cells.<ref name="Chen 2010" /> The theory of classical irreversible thermodynamics treats self-assembly under a generalized chemical potential within the framework of ]s.<ref>{{cite journal |last=Onsager |first=Lars |date=1931 |title=Reciprocal Relations in Irreversible Processes I |journal=Physical Review |volume=37 |issue=4 |page=405 |doi= 10.1103/PhysRev.37.405 |bibcode=1931PhRv...37..405O|doi-access=free }}</ref><ref>{{cite journal |last=Onsager |first=Lars |date=1931 |title=Reciprocal Relations in Irreversible Processes II |journal= Physical Review |volume=38 |issue=12 |page=2265 |doi=10.1103/PhysRev.38.2265|bibcode=1931PhRv...38.2265O |doi-access=free }}</ref><ref>{{cite book |last=Prigogine |first=Ilya |author-link=Ilya Prigogine |year=1967 |title=An Introduction to the Thermodynamics of Irreversible Processes |publisher=] |location=New York}}</ref> The ] requires that overall ] increases, yet life is distinguished by its great degree of organization. Therefore, a boundary is needed to separate ordered ] from chaotic non-living matter.<ref name="SciAm 2007">{{cite journal |last=Shapiro |first=Robert |author-link=Robert Shapiro (chemist) |date=June 2007 |title=A Simpler Origin for Life |url=http://www.scientificamerican.com/article/a-simpler-origin-for-life/ |url-status=live |journal=] |volume=296 |issue=6 |pages=46–53 |bibcode=2007SciAm.296f..46S |doi=10.1038/scientificamerican0607-46 |pmid=17663224 |archive-url=https://web.archive.org/web/20150614000643/http://www.scientificamerican.com/article/a-simpler-origin-for-life/ |archive-date=14 June 2015}}</ref> | |||
Irene Chen and ] suggest that elementary protocells can give rise to cellular behaviors including primitive forms of differential reproduction, competition, and energy storage.<ref name="Chen 2006" /> Competition for membrane molecules would favor stabilized membranes, suggesting a selective advantage for the evolution of cross-linked fatty acids and even the ]s of today.<ref name="Chen 2006" /> Such ] would allow for metabolism within the membrane and the exchange of small molecules, while retaining large biomolecules inside. Such a membrane is needed for a cell to create its own ] to store energy by pumping ions across the membrane.<ref>{{harvnb|Chang|2007}}</ref><ref name="Lane 2015" /> Fatty acid vesicles in conditions relevant to alkaline hydrothermal vents can be stabilized by isoprenoids which are synthesized by the formose reaction; the advantages and disadvantages of isoprenoids incorporated within the lipid bilayer in different microenvironments might have led to the divergence of the membranes of archaea and bacteria.<ref>{{Cite journal |last1=Jordan |first1=Sean F. |last2=Nee |first2=Eloise |last3=Lane |first3=Nick |author3-link=Nick Lane |date=2019-12-06 |title=Isoprenoids enhance the stability of fatty acid membranes at the emergence of life potentially leading to an early lipid divide |journal=Interface Focus |volume=9 |issue=6 |page=20190067 |doi=10.1098/rsfs.2019.0067 |pmc=6802135 |pmid=31641436}}</ref> | |||
Laboratory experiments have shown that vesicles can undergo an evolutionary process under pressure cycling conditions.<ref>{{Cite journal |last1=Mayer |first1=Christian |last2=Schreiber |first2=Ulrich |last3=Dávila |first3=María J. |last4=Schmitz |first4=Oliver J. |last5=Bronja |first5=Amela |last6=Meyer |first6=Martin |last7=Klein |first7=Julia |last8=Meckelmann |first8=Sven W. |date=2018 |title=Molecular Evolution in a Peptide-Vesicle System |journal=Life |language=en |volume=8 |issue=2 |pages=16 |doi=10.3390/life8020016 |doi-access=free |pmid=29795023 |pmc=6027363 |bibcode=2018Life....8...16M |issn=2075-1729}}</ref> Simulating the systemic environment in tectonic ] within the ], pressure cycling leads to the periodic formation of vesicles.<ref>{{Cite journal |last1=Mayer |first1=Christian |last2=Schreiber |first2=Ulrich |last3=Dávila |first3=María J. |date=2015-06-01 |title=Periodic Vesicle Formation in Tectonic Fault Zones—an Ideal Scenario for Molecular Evolution |journal=Origins of Life and Evolution of Biospheres |language=en |volume=45 |issue=1 |pages=139–148 |doi=10.1007/s11084-015-9411-z |issn=1573-0875 |pmc=4457167 |pmid=25716918|bibcode=2015OLEB...45..139M }}</ref> Under the same conditions, random ] chains are being formed, which are being continuously selected for their ability to integrate into the vesicle membrane. A further selection of the vesicles for their stability potentially leads to the development of functional peptide structures,<ref>{{Cite journal |last1=Dávila |first1=María J. |last2=Mayer |first2=Christian |date=2022 |title=Membrane Structure Obtained in an Experimental Evolution Process |journal=Life |language=en |volume=12 |issue=2 |pages=145 |doi=10.3390/life12020145 |doi-access=free |pmid=35207433 |pmc=8875328 |bibcode=2022Life...12..145D |issn=2075-1729}}</ref><ref>{{Cite journal |last=Mayer |first=Christian |date=2022 |title=Spontaneous Formation of Functional Structures in Messy Environments |journal=Life |language=en |volume=12 |issue=5 |pages=720 |doi=10.3390/life12050720 |doi-access=free |pmid=35629387 |pmc=9148140 |bibcode=2022Life...12..720M |issn=2075-1729}}</ref><ref>{{Cite journal |last1=Dávila |first1=María J. |last2=Mayer |first2=Christian |date=2023 |title=Structural Phenomena in a Vesicle Membrane Obtained through an Evolution Experiment: A Study Based on MD Simulations |journal=Life |language=en |volume=13 |issue=8 |pages=1735 |doi=10.3390/life13081735 |doi-access=free |pmid=37629592 |pmc=10455627 |bibcode=2023Life...13.1735D |issn=2075-1729}}</ref> associated with an increase in the survival rate of the vesicles. | |||
== Producing biology == | |||
=== Energy and entropy === | |||
{{further|Entropy}} | |||
Life requires a loss of entropy, or disorder, as molecules organize themselves into living matter. At the same time, the emergence of life is associated with the formation of structures beyond a certain threshold of ].<ref>{{Cite journal |last=Mayer |first=Christian |date=2020-01-18 |title=Life in The Context of Order and Complexity |journal=Life |language=en |volume=10 |issue=1 |pages=5 |doi=10.3390/life10010005 |doi-access=free |issn=2075-1729 |pmc=7175320 |pmid=31963637|bibcode=2020Life...10....5M }}</ref> The emergence of life with increasing order and complexity does not contradict the second law of thermodynamics, which states that overall entropy never decreases, since a living organism creates order in some places (e.g. its living body) at the expense of an increase of entropy elsewhere (e.g. heat and waste production).<ref name="AP-2018">{{cite book |last1=Sharov |first1=Alexei A. |last2=Gordon |first2=Richard |title=Habitability of the Universe Before Earth: Life Before Earth |chapter=Life Before Earth |series=Astrobiology Exploring Life on Earth and Beyond |chapter-url=https://www.sciencedirect.com/science/article/pii/B9780128119402000113 |date=2018 |publisher=] |pages=265–296 |doi=10.1016/B978-0-12-811940-2.00011-3 |isbn=978-0-12-811940-2 |s2cid=117048600 |access-date=30 April 2022 |archive-date=30 April 2022 |archive-url=https://web.archive.org/web/20220430161329/https://www.sciencedirect.com/science/article/pii/B9780128119402000113 |url-status=live }}</ref><ref>{{cite journal |last1=Ladyman |first1=J. |last2=Lambert |first2=J. |last3=Weisner |first3=K. B. |title=What is a Complex System? |journal=European Journal of the Philosophy of Science |year=2013 |volume=3 |pages=33–67 |doi=10.1007/s13194-012-0056-8 |s2cid=18787276}}</ref><ref>{{cite journal |last1=Esposito |first1=M. |last2=Lindenberg |first2=Katja |author2-link=Katja Lindenberg |last3=Van den Broeck |first3=C. |year=2010 |title=Entropy production as correlation between system and reservoir |journal=] |volume=12 |issue=1 |page=013013 |doi=10.1088/1367-2630/12/1/013013 |arxiv=0908.1125 |bibcode=2010NJPh...12a3013E |s2cid=26657293}}</ref> | |||
Multiple sources of energy were available for chemical reactions on the early Earth. Heat from ] processes is a standard energy source for chemistry. Other examples include sunlight, lightning,<ref name="Follmann2009"/> atmospheric entries of micro-meteorites,<ref name="Bar-Nun Bar-Nun Bauer Sagan 1970">{{cite journal |last1=Bar-Nun |first1=A. |last2=Bar-Nun |first2=N. |last3=Bauer |first3=S. H. |last4=Sagan |first4=Carl |author4-link=Carl Sagan |title=Shock Synthesis of Amino Acids in Simulated Primitive Environments |journal=Science |volume=168 |issue=3930 |date=24 April 1970 |doi=10.1126/science.168.3930.470 |pages=470–473 |pmid=5436082 |bibcode=1970Sci...168..470B |s2cid=42467812}}</ref> and implosion of bubbles in sea and ocean waves.<ref name="Anbar 1968">{{cite journal |last=Anbar |first=Michael |title=Cavitation during Impact of Liquid Water on Water: Geochemical Implications |journal=] |volume=161 |issue=3848 |date=27 September 1968 |doi=10.1126/science.161.3848.1343 |pages=1343–1344 |pmid=17831346 |bibcode=1968Sci...161.1343A}}</ref> This has been confirmed by experiments<ref name="Dharmarathne Grieser 2016">{{cite journal |last1=Dharmarathne |first1=Leena |last2=Grieser |first2=Franz |title=Formation of Amino Acids on the Sonolysis of Aqueous Solutions Containing Acetic Acid, Methane, or Carbon Dioxide, in the Presence of Nitrogen Gas |journal=] |volume=120 |issue=2 |date=7 January 2016 |doi=10.1021/acs.jpca.5b11858 |pages=191–199 |pmid=26695890 |bibcode=2016JPCA..120..191D}}</ref><ref name="Patehebieke Zhao Wang Xu 2021">{{cite journal |last1=Patehebieke |first1=Yeersen |last2=Zhao |first2=Ze-Run |last3=Wang |first3=Su |last4=Xu |first4=Hao-Xing |last5=Chen |first5=Qian-Qian |last6=Wang |first6=Xiao |title=Cavitation as a plausible driving force for the prebiotic formation of N9 purine nucleosides |journal=Cell Reports Physical Science |volume=2 |issue=3 |year=2021 |doi=10.1016/j.xcrp.2021.100375 |page=100375 |bibcode=2021CRPS....200375P |s2cid=233662126|doi-access=free }}</ref> and simulations.<ref name="Kalson Furman Zeiri 2017">{{cite journal |last1=Kalson |first1=Natan-Haim |last2=Furman |first2=David |last3=Zeiri |first3=Yehuda |title=Cavitation-Induced Synthesis of Biogenic Molecules on Primordial Earth |journal=] |volume=3 |issue=9 |date=11 September 2017 |doi=10.1021/acscentsci.7b00325 |pages=1041–1049 |pmid=28979946 |pmc=5620973 |s2cid=21409351}}</ref> | |||
Unfavorable reactions can be driven by highly favorable ones, as in the case of iron-sulfur chemistry. For example, this was probably important for ].{{efn|The reactions are: | |||
:FeS + H<sub>2</sub>S → FeS<sub>2</sub> + 2H<sup>+</sup> + 2e<sup>−</sup> | |||
:FeS + H<sub>2</sub>S + CO<sub>2</sub> → FeS<sub>2</sub> + HCOOH}} Carbon fixation by reaction of CO<sub>2</sub> with H<sub>2</sub>S via iron-sulfur chemistry is favorable, and occurs at neutral pH and 100 °C. Iron-sulfur surfaces, which are abundant near hydrothermal vents, can drive the production of small amounts of amino acids and other biomolecules.<ref name="Follmann2009"/> | |||
=== Chemiosmosis === | |||
{{Further|Chemiosmosis}} | |||
] uses the chemiosmotic proton gradient to power ATP synthesis through ].]] | |||
In 1961, ] proposed ] as a cell's primary system of energy conversion. The mechanism, now ubiquitous in living cells, powers energy conversion in micro-organisms and in the ] of eukaryotes, making it a likely candidate for early life.<ref>{{cite journal |last=Muller |first=Anthonie W. J. |year=1995 |title=Were the first organisms heat engines? A new model for biogenesis and the early evolution of biological energy conversion |journal=] |volume=63 |issue=2 |pages=193–231 |doi=10.1016/0079-6107(95)00004-7 |pmid=7542789 |doi-access=free}}</ref><ref>{{cite journal |last1=Muller |first1=Anthonie W. J. |first2=Dirk |last2=Schulze-Makuch |author-link2=Dirk Schulze-Makuch |year=2006 |title=Thermal energy and the origin of life |journal=] |volume=36 |issue=2 |pages=77–189 |bibcode=2006OLEB...36..177M |doi=10.1007/s11084-005-9003-4 |pmid=16642267 |s2cid=22179552}}</ref> Mitochondria produce ] (ATP), the energy currency of the cell used to drive cellular processes such as chemical syntheses. The mechanism of ATP synthesis involves a closed membrane in which the ] enzyme is embedded. The energy required to release strongly bound ATP has its origin in ]s that move across the membrane.<ref name="Junge Nelson 2015">{{cite journal |last1=Junge |first1=Wolfgang |last2=Nelson |first2=Nathan |title=ATP Synthase |journal=] |volume=84 |issue=1 |date=2 June 2015 |doi=10.1146/annurev-biochem-060614-034124 |pages=631–657 |pmid=25839341|doi-access=free }}</ref> In modern cells, those proton movements are caused by the pumping of ions across the membrane, maintaining an electrochemical gradient. In the first organisms, the gradient could have been provided by the difference in chemical composition between the flow from a hydrothermal vent and the surrounding seawater,<ref name="Lane 2015">{{cite book |last=Lane |first=Nick |author-link=Nick Lane |year=2015 |title=] |publisher=] |isbn=978-1-78125-036-5 |pages=129–140}}</ref> or perhaps meteoric quinones that were conducive to the development of chemiosmotic energy across lipid membranes if at a terrestrial origin.<ref name="Damer 2020">{{cite journal |last1=Damer |first1=Bruce |last2=Deamer |first2=David |date=2020-04-01 |title=The Hot Spring Hypothesis for an Origin of Life |journal=Astrobiology |volume=20 |issue=4 |pages=429–452 |doi=10.1089/ast.2019.2045 |pmc=7133448 |pmid=31841362 |bibcode=2020AsBio..20..429D}}</ref> | |||
] coupling in the membranes of a ]]] | |||
{{clear}} | |||
=== PAH world hypothesis === | |||
{{main|PAH world hypothesis}} | |||
The PAH world hypothesis posits polycyclic aromatic hydrocarbons as precursors to the RNA world.<ref>{{cite journal |last1=d'Ischia |first1=Marco |last2=Manini |first2=Paola |last3=Moracci |first3=Marco |last4=Saladino |first4=Raffaele |last5=Ball |first5=Vincent |last6=Thissen |first6=Helmut |last7=Evans |first7=Richard A. |last8=Puzzarini |first8=Cristina |last9=Barone |first9=Vincenzo |display-authors=3 |date=21 August 2019 |title=Astrochemistry and Astrobiology: Materials Science in Wonderland? |journal=] |volume=20 |issue=17 |page=4079 |doi=10.3390/ijms20174079 |pmc=6747172 |pmid=31438518 |doi-access=free}}</ref> | |||
{{excerpt|PAH world hypothesis|Paragraphs=1|files=0}} | |||
=== The RNA world === | |||
=== RNA world === | |||
{{Main|RNA world}} | {{Main|RNA world}} | ||
<!--Possible subsections to split off after enough content is added: evidence relating to the RNA world and the evolution of protein synthesis--> | |||
The ] hypothesis describes an early Earth with self-replicating and catalytic RNA but no DNA or proteins.<ref>{{cite journal |last1=Benner |first1=S. A. |last2=Bell |first2=E. A. |last3=Biondi |first3=E. |last4=Brasser |first4=R. |last5=Carell |first5=T. |last6=Kim |first6=H.-J. |last7=Mojzsis |first7=S. J. |last8=Omran |first8=A. |last9=Pasek |first9=M. A. |last10=Trail |first10=D. |date=2020 |title=When Did Life Likely Emerge on Earth in an RNA-First Process? |journal=ChemSystemsChem |volume=2 |issue=2 |doi=10.1002/syst.201900035 |doi-access=free|arxiv=1908.11327 |bibcode=2020CSysC...2...35B }}</ref> Many researchers concur that an RNA world must have preceded the DNA-based life that now dominates.<ref name="RNA">* {{cite journal |last1=Copley |first1=Shelley D. |last2=Smith |first2=Eric |last3=Morowitz |first3=Harold J. |author-link3=Harold J. Morowitz |date=December 2007 |title=The origin of the RNA world: Co-evolution of genes and metabolism |url=http://tuvalu.santafe.edu/~desmith/PDF_pubs/Copley_BOG.pdf |url-status=live |journal=Bioorganic Chemistry |volume=35 |issue=6 |pages=430–443 |doi=10.1016/j.bioorg.2007.08.001 |pmid=17897696 |archive-url=https://web.archive.org/web/20130905070129/http://tuvalu.santafe.edu/~desmith/PDF_pubs/Copley_BOG.pdf |archive-date=5 September 2013 |access-date=8 June 2015 |quote=The proposal that life on Earth arose from an RNA world is widely accepted. |ref=none}} | |||
] from '']''.<ref name="Venki">{{cite journal |last1=Wimberly |first1=Brian T. |last2=Brodersen |first2=Ditlev E. |last3=Clemons |first3=William M., Jr. |last4=Morgan-Warren |first4=Robert J. |last5=Carter |first5=Andrew P. |last6=Vonrhein |first6=Clemens |last7=Hartsch |first7=Thomas |last8=Ramakrishnan |first8=V. |authorlink8=Venkatraman Ramakrishnan |display-authors=3 |date=21 September 2000 |title=Structure of the 30S ribosomal subunit |journal=Nature |location=London |publisher=Nature Publishing Group |volume=407 |issue=6802 |pages=327–339 |doi=10.1038/35030006 |issn=0028-0836 |pmid=11014182}}</ref> ]s are shown in blue and the single ] chain in orange.]] | |||
* {{cite journal |last=Orgel |first=Leslie E. |author-link=Leslie Orgel |date=April 2003 |title=Some consequences of the RNA world hypothesis |journal=] |volume=33 |issue=2 |pages=211–218 |bibcode=2003OLEB...33..211O |doi=10.1023/A:1024616317965 |pmid=12967268 |quote=It now seems very likely that our familiar DNA/RNA/protein world was preceded by an RNA world... |s2cid=32779859 |ref=none}} | |||
The RNA world hypothesis describes an early Earth with self-replicating and catalytic RNA but no DNA or proteins.<ref name="NYT-20140925-CZ">{{cite news |last=Zimmer |first=Carl |date=25 September 2014 |title=A Tiny Emissary From the Ancient Past |url=http://www.nytimes.com/2014/09/25/science/a-tiny-emissary-from-the-ancient-past.html |newspaper=The New York Times |location=New York |publisher=The New York Times Company |issn=0362-4331 |accessdate=2014-09-26}}</ref> It is generally accepted that current life on Earth descends from an RNA world,<ref name="RNA">*{{cite journal |last=Copley |first=Shelley D. |last2=Smith |first2=Eric |last3=Morowitz |first3=Harold J. |authorlink3=Harold J. Morowitz |date=December 2007 |title=The origin of the RNA world: Co-evolution of genes and metabolism |url=http://tuvalu.santafe.edu/~desmith/PDF_pubs/Copley_BOG.pdf |format=PDF |journal=Bioorganic Chemistry |location=Amsterdam, the Netherlands |publisher=Elsevier |volume=35 |issue=6 |pages=430–443 |doi=10.1016/j.bioorg.2007.08.001 |issn=0045-2068 |pmid=17897696 |accessdate=2015-06-08 |quote=The proposal that life on Earth arose from an RNA world is widely accepted.}} | |||
* {{cite journal |last=Orgel |first=Leslie E. |authorlink=Leslie Orgel |date=April 2003 |title=Some consequences of the RNA world hypothesis |journal=Origins of Life and Evolution of the Biosphere |publisher=] |volume=33 |issue=2 |pages=211–218 |doi=10.1023/A:1024616317965 |issn=0169-6149 |pmid=12967268 |quote=It now seems very likely that our familiar DNA/RNA/protein world was preceded by an RNA world...}} | |||
* {{harvnb|Robertson|Joyce|2012}}: "There is now strong evidence indicating that an RNA World did indeed exist before DNA- and protein-based life." | * {{harvnb|Robertson|Joyce|2012}}: "There is now strong evidence indicating that an RNA World did indeed exist before DNA- and protein-based life." | ||
* {{harvnb|Neveu|Kim|Benner|2013}}: " has broad support within the community today."</ref> |
* {{harvnb|Neveu|Kim|Benner|2013}}: " has broad support within the community today."</ref> However, RNA-based life may not have been the first to exist.<ref name="Robertson2012">{{cite journal |last1=Robertson |first1=Michael P. |last2=Joyce |first2=Gerald F. |author-link2=Gerald Joyce |date=May 2012 |title=The origins of the RNA world |journal=] |volume=4 |issue=5 |page=a003608 |doi=10.1101/cshperspect.a003608 |pmc=3331698 |pmid=20739415}}</ref><ref name="Cech2012">{{cite journal |last=Cech |first=Thomas R. |author-link=Thomas Cech |date=July 2012 |title=The RNA Worlds in Context |journal=] |volume=4 |issue=7 |page=a006742 |doi=10.1101/cshperspect.a006742 |pmc=3385955 |pmid=21441585}}</ref> Another model echoes Darwin's "warm little pond" with cycles of wetting and drying.<ref>{{cite journal |last1=Pearce |first1=Ben K. D. |last2=Pudritz |first2=Ralph E. |last3=Semenov |first3=Dmitry A. |last4=Henning |first4=Thomas K. |date=24 October 2017 |title=Origin of the RNA world: The fate of nucleobases in warm little ponds |journal=] |volume=114 |issue=43 |pages=11327–11332 |doi=10.1073/pnas.1710339114 |pmid=28973920 |pmc=5664528 |arxiv=1710.00434 |bibcode=2017PNAS..11411327P |doi-access=free}}</ref> | ||
RNA is central to the translation process. Small RNAs can catalyze all the chemical groups and information transfers required for life.<ref name="Cech2012"/><ref name="Yarus2011">{{cite journal |last=Yarus |first=Michael |date=April 2011 |title=Getting Past the RNA World: The Initial Darwinian Ancestor |journal=Cold Spring Harbor Perspectives in Biology |volume=3 |issue=4 |page=a003590 |doi=10.1101/cshperspect.a003590 |pmc=3062219 |pmid=20719875}}</ref> RNA both expresses and maintains genetic information in modern organisms; and the chemical components of RNA are easily synthesized under the conditions that approximated the early Earth, which were very different from those that prevail today. The structure of the ] has been called the "smoking gun", with a central core of RNA and no amino acid side chains within 18 ] of the ] that catalyzes peptide bond formation.<ref>{{harvnb|Voet|Voet|2004|p=29}}</ref><ref name="Robertson2012"/><ref>{{cite journal |last1=Fox |first1=George.E. |date=9 June 2010 |title=Origin and evolution of the ribosome |journal=] |volume=2 |issue=9(a003483) |page=a003483 |doi=10.1101/cshperspect.a003483 |pmc=2926754 |pmid=20534711 |doi-access=free}}</ref> | |||
Possible precursors for the evolution of protein synthesis include a mechanism to synthesize short peptide cofactors or form a mechanism for the duplication of RNA. It is likely that the ancestral ribosome was composed entirely of RNA, although some roles have since been taken over by proteins. Major remaining questions on this topic include identifying the selective force for the evolution of the ribosome and determining how the ] arose.<ref name="Noller2012">{{cite journal |last=Noller |first=Harry F. |authorlink=Harry F. Noller |date=April 2012 |title=Evolution of protein synthesis from an RNA world. |journal=Cold Spring Harbor Perspectives in Biology |location=Cold Spring Harbor, NY |publisher=Cold Spring Harbor Laboratory Press |volume=4 |issue=4 |page=a003681 |doi=10.1101/cshperspect.a003681 |issn=1943-0264 |pmc=3312679 |pmid=20610545}}</ref> | |||
The concept of the RNA world was proposed in 1962 by ],<ref>{{cite journal |last1=Neveu |first1=Marc |last2=Kim |first2=Hyo-Joong |last3=Benner |first3=Steven A. |date=22 April 2013 |title=The 'Strong' RNA World Hypothesis: Fifty Years Old |journal=] |volume=13 |issue=4 |pages=391–403 |bibcode=2013AsBio..13..391N |doi=10.1089/ast.2012.0868 |pmid=23551238}}</ref> and the term was coined by ] in 1986.<ref name="Cech2012"/><ref>{{cite journal |last=Gilbert |first=Walter |author-link=Walter Gilbert |date=20 February 1986 |title=Origin of life: The RNA world |journal=Nature |volume=319 |issue=6055 |page=618 |bibcode=1986Natur.319..618G |doi=10.1038/319618a0 |doi-access=free |s2cid=8026658}}</ref> There were initial difficulties in the explanation of the abiotic synthesis of the nucleotides cytosine and uracil.<ref>{{cite journal |last=Orgel |first=Leslie E. |date=October 1994 |title=The origin of life on Earth |journal=Scientific American |volume=271 |issue=4 |pages=76–83 |bibcode=1994SciAm.271d..76O |doi=10.1038/scientificamerican1094-76 |pmid=7524147}}</ref> Subsequent research has shown possible routes of synthesis; for example, formamide produces all four ]s and other biological molecules when warmed in the presence of various terrestrial minerals.<ref name="Saladino2012"/><ref name="Saladino2012b"/> | |||
] said, "Despite considerable experimental and theoretical effort, no compelling scenarios currently exist for the origin of replication and translation, the key processes that together comprise the core of biological systems and the apparent pre-requisite of biological evolution. The RNA World concept might offer the best chance for the resolution of this conundrum but so far cannot adequately account for the emergence of an efficient RNA replicase or the translation system. The MWO version of the cosmological model of ] could suggest a way out of this conundrum because, in an infinite ] with a finite number of distinct macroscopic histories (each repeated an infinite number of times), emergence of even highly complex systems by chance is not just possible but inevitable."<ref name="koonin.pmc1892545">{{cite journal |last=Koonin |first=Eugene V. |date=31 May 2007 |title=The cosmological model of eternal inflation and the transition from chance to biological evolution in the history of life |journal=Biology Direct |location=London |publisher=BioMed Central |volume=2 |page=15 |doi=10.1186/1745-6150-2-15 |issn=1745-6150 |pmc=1892545 |pmid=17540027}}</ref> | |||
]s, and in turn to an ].]] | |||
==== Viral origins and the RNA World ==== | |||
] can function as both code and catalyst for further RNA replication, i.e. it can be autocatalytic. ] has shown that certain catalytic RNAs can join smaller RNA sequences together, creating the potential for self-replication. The RNA replication systems, which include two ribozymes that catalyze each other's synthesis, showed a doubling time of the product of about one hour, and were subject to natural selection under the experimental conditions.<ref>{{cite journal |last1=Lincoln |first1=Tracey A. |last2=Joyce |first2=Gerald F. |date=27 February 2009 |title=Self-Sustained Replication of an RNA Enzyme |journal=] |volume=323 |issue=5918 |pages=1229–1232 |bibcode=2009Sci...323.1229L |doi=10.1126/science.1167856 |pmc=2652413 |pmid=19131595}}</ref><ref name="Joyce2009">{{cite journal |last=Joyce |first=Gerald F. |year=2009 |title=Evolution in an RNA world |journal=Cold Spring Harbor Perspectives in Biology |volume=74 |issue=Evolution: The Molecular Landscape |pages=17–23 |doi=10.1101/sqb.2009.74.004 |pmc=2891321 |pmid=19667013}}</ref><ref name="Robertson2012"/> If such conditions were present on early Earth, then natural selection would favor the proliferation of such ]s, to which further functionalities could be added.<ref>{{cite web |last=Szostak |first=Jack W. |author-link=Jack W. Szostak |date=5 February 2015 |title=The Origins of Function in Biological Nucleic Acids, Proteins, and Membranes |url=http://www.hhmi.org/research/origins-cellular-life |url-status=live |archive-url=https://web.archive.org/web/20150714092225/http://www.hhmi.org/research/origins-cellular-life |archive-date=14 July 2015 |access-date=16 June 2015 |publisher=] |location=Chevy Chase, Maryland}}</ref><ref name="Bernstein">{{cite journal |last1=Bernstein |first1=Harris |last2=Byerly |first2=Henry C. |last3=Hopf |first3=Frederick A. |last4=Michod |first4=Richard A. |last5=Vemulapalli |first5=G. Krishna |display-authors=3 |date=June 1983 |title=The Darwinian Dynamic |journal=] |volume=58 |issue=2 |pages=185–207 |doi=10.1086/413216 |jstor=2828805 |s2cid=83956410}}</ref><ref name="Michod 1999">{{harvnb|Michod|1999}}</ref> Self-assembly of RNA may occur spontaneously in hydrothermal vents.<ref>{{cite arXiv |eprint=1305.5581v1 |class=q-bio.BM |first=Stan |last=Palasek |title=Primordial RNA Replication and Applications in PCR Technology |date=23 May 2013}}</ref><ref name="pmid16044244">{{cite journal |last1=Vlassov |first1=Alexander V. |last2=Kazakov |first2=Sergei A. |last3=Johnston |first3=Brian H. |last4=Landweber |first4=Laura F. |display-authors=3 |date=August 2005 |title=The RNA World on Ice: A New Scenario for the Emergence of RNA Information |journal=] |volume=61 |issue=2 |pages=264–273 |bibcode=2005JMolE..61..264V |doi=10.1007/s00239-004-0362-7 |pmid=16044244 |s2cid=21096886}}</ref><ref>{{cite journal |last1=Nussinov |first1=Mark D. |last2=Otroshchenko |first2=Vladimir A. |last3=Santoli |first3=Salvatore |year=1997 |title=The emergence of the non-cellular phase of life on the fine-grained clayish particles of the early Earth's regolith |journal=] |volume=42 |issue=2–3 |pages=111–118 |doi=10.1016/S0303-2647(96)01699-1 |pmid=9184757|bibcode=1997BiSys..42..111N }}</ref> A preliminary form of tRNA could have assembled into such a replicator molecule.<ref name="EL-20210302">{{cite journal |last1=Kühnlein |first1=Alexandra |last2=Lanzmich |first2=Simon A. |last3=Brun |first3=Dieter |date=2 March 2021 |title=tRNA sequences can assemble into a replicator |journal=] |volume=10 |doi=10.7554/eLife.63431 |pmc=7924937 |pmid=33648631 |doi-access=free}}</ref> | |||
Recent evidence for a "virus first" hypothesis, which may support theories of the RNA world have been suggested in new research.<ref name="Urbana–Champaign_pr">{{cite press release |last=Yates |first=Diana |date=25 September 2015 |title=Study adds to evidence that viruses are alive |url=https://news.illinois.edu/blog/view/6367/250879 |location=Champaign, IL |publisher=] |accessdate=2015-10-20}}</ref> One of the difficulties for the study viral origins and evolution is their high rate of mutation; this is particularly the case in RNA retroviruses like HIV/AIDS.<ref>Katzourakis, Aris (2013)"Paleovirology: inferring viral evolution from host genome sequence data" (Philosophical Transactions of the Royal Society Published 12 August 2013.DOI: 10.1098/rstb.2012.0493)</ref> A 2015 study compared ] structures across different branches of the tree of life, where researchers can reconstruct the evolutionary histories of the folds and of the organisms whose ] code for those folds. They argue that protein folds are better markers of ancient events as their three-dimensional structures can be maintained even as the sequences that code for those begin to change.<ref name="Urbana–Champaign_pr" /> Thus, the viral ] retain traces of ancient evolutionary history that can be recovered using advanced ] approaches. Those researchers have concluded that, "the prolonged pressure of genome and particle size reduction eventually reduced virocells into modern viruses (identified by the complete loss of cellular makeup), meanwhile other coexisting cellular lineages diversified into modern cells.<ref>{{cite journal |last1=Arshan |first1=Nasir |last2=Caetano-Anollés |first2=Gustavo |date=25 September 2015 |title=A phylogenomic data-driven exploration of viral origins and evolution |journal=] |location=Washington, D.C. |publisher=American Association for the Advancement of Science |volume=1 |number=8 |page=e1500527 |doi=10.1126/sciadv.1500527 |issn=2375-2548}}</ref> The data suggest that viruses originated from ancient cells that co-existed with the ancestors of modern cells.<ref name="Urbana–Champaign_pr" /> These ancient cells likely contained segmented RNA genomes.<ref name="Urbana–Champaign_pr" /><ref>{{cite journal |last1=Nasir |first1=Arshan |last2=Naeem |first2=Aisha |last3=Jawad Khan |first3=Muhammad |last4=Lopez-Nicora |first4=Horacio D. |last5=Caetano-Anollés |first5=Gustavo |display-authors=3 |date=December 2011 |title=Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms |journal=] |location=Basel, Switzerland |publisher=] |volume=2 |issue=4 |pages=869–911 |doi=10.3390/genes2040869 |issn=2073-4425 |pmc=3927607 |pmid=24710297}}</ref> | |||
Possible precursors to protein synthesis include the synthesis of short peptide cofactors or the self-catalysing duplication of RNA. It is likely that the ancestral ribosome was composed entirely of RNA, although some roles have since been taken over by proteins. Major remaining questions on this topic include identifying the selective force for the evolution of the ribosome and determining how the genetic code arose.<ref name="Noller2012">{{cite journal |last=Noller |first=Harry F. |author-link=Harry F. Noller |date=April 2012 |title=Evolution of protein synthesis from an RNA world. |journal=] |volume=4 |issue=4 |page=a003681 |doi=10.1101/cshperspect.a003681 |pmc=3312679 |pmid=20610545|bibcode=2012CSHPB...4.3681N }}</ref> | |||
=== RNA synthesis and replication === | |||
The RNA world hypothesis has spurred scientists to determine if RNA molecules could have spontaneously formed able to catalyze their own replication.<ref name="NYT-20130912">{{cite news |last=Zimmer |first=Carl |date=12 September 2013 |title=A Far-Flung Possibility for the Origin of Life |url=http://www.nytimes.com/2013/09/12/science/space/a-far-flung-possibility-for-the-origin-of-life.html |newspaper=The New York Times |location=New York |publisher=The New York Times Company |issn=0362-4331 |accessdate=2015-06-15}}</ref><ref name="NS-20130829">{{cite journal |last=Webb |first=Richard |date=29 August 2013 |title=Primordial broth of life was a dry Martian cup-a-soup |url=http://www.newscientist.com/article/dn24120-primordial-broth-of-life-was-a-dry-martian-cupasoup.html |journal=New Scientist |location=London |publisher=Reed Business Information |issn=0262-4079 |accessdate=2015-06-16}}</ref><ref>{{cite journal |author1=Wentao Ma |author2=Chunwu Yu |author3=Wentao Zhang |author4=Jiming Hu |display-authors=3 |date=November 2007 |title=Nucleotide synthetase ribozymes may have emerged first in the RNA world |journal=] |location=Cold Spring Harbor, NY |publisher=Cold Spring Harbor Laboratory Press on behalf of the RNA Society |volume=13 |issue=11 |pages=2012–2019 |doi=10.1261/rna.658507 |issn=1355-8382 |pmc=2040096 |pmid=17878321}}</ref> Evidence suggests that the chemical conditions, including the presence of ], ] and oxygen needed for the initial production of RNA molecules, may have been better on the planet Mars than on the planet Earth.<ref name="NYT-20130912" /><ref name="NS-20130829" /> If so, life-suitable molecules originating on Mars, may have later migrated to Earth via ].<ref name="NYT-20130912" /><ref name="NS-20130829" /> | |||
] has argued that "no compelling scenarios currently exist for the origin of replication and translation, the key processes that together comprise the core of biological systems and the apparent pre-requisite of biological evolution. The RNA World concept might offer the best chance for the resolution of this conundrum but so far cannot adequately account for the emergence of an efficient RNA replicase or the translation system."<ref name="pmc1892545">{{cite journal |last=Koonin |first=Eugene V. |author-link=Eugene Koonin |date=31 May 2007 |title=The cosmological model of eternal inflation and the transition from chance to biological evolution in the history of life |journal=] |volume=2 |page=15 |doi=10.1186/1745-6150-2-15 |pmc=1892545 |pmid=17540027 |doi-access=free }}</ref> | |||
A number of hypotheses of formation of RNA have been put forward. {{As of|1994}}, there are difficulties in the explanation of the abiotic synthesis of the nucleotides cytosine and uracil.<ref>{{cite journal |last=Orgel |first=Leslie E. |date=October 1994 |title=The origin of life on Earth |journal=Scientific American |location=Stuttgart |publisher=Georg von Holtzbrinck Publishing Group |volume=271 |issue=4 |pages=76–83 |doi=10.1038/scientificamerican1094-76 |issn=0036-8733 |pmid=7524147}}</ref> Subsequent research has shown possible routes of synthesis; for example, formamide produces all four ribonucleotides and other biological molecules when warmed in the presence of various terrestrial minerals.<ref name="Saladino2012" /><ref name="Saladino2012b" /> Early cell membranes could have formed spontaneously from proteinoids, which are protein-like molecules produced when amino acid solutions are heated while in the correct concentration of aqueous solution. These are seen to form micro-spheres which are observed to behave similarly to membrane-enclosed compartments. Other possible means of producing more complicated organic molecules include chemical reactions that take place on ] substrates or on the surface of the mineral ]. | |||
=== From RNA to directed protein synthesis === | |||
Factors supportive of an important role for RNA in early life include its ability to act both to store information and to catalyze chemical reactions (as a ribozyme); its many important roles as an intermediate in the expression of and maintenance of the genetic information (in the form of DNA) in modern organisms; and the ease of chemical synthesis of at least the components of the RNA molecule under the conditions that approximated the early Earth. Relatively short RNA molecules have been artificially produced in labs, which are capable of replication.<ref>{{cite journal |last1=Johnston |first1=Wendy K. |last2=Unrau |first2=Peter J. |last3=Lawrence |first3=Michael S. |last4=Glasner |first4=Margaret E. |last5=Bartel |first5=David P. |authorlink5=David Bartel |display-authors=3 |date=18 May 2001 |title=RNA-Catalyzed RNA Polymerization: Accurate and General RNA-Templated Primer Extension |journal=Science |location=Washington, D.C. |publisher=American Association for the Advancement of Science |volume=292 |issue=5520 |pages=1319–1325 |bibcode=2001Sci...292.1319J |doi=10.1126/science.1060786 |issn=0036-8075 |pmid=11358999}}</ref> Such replicase RNA, which functions as both code and catalyst provides its own template upon which copying can occur. Jack W. Szostak has shown that certain catalytic RNAs can join smaller RNA sequences together, creating the potential for self-replication. If these conditions were present, Darwinian natural selection would favour the proliferation of such ]s, to which further functionalities could be added.<ref>{{cite web |url=http://www.hhmi.org/research/origins-cellular-life |title=The Origins of Function in Biological Nucleic Acids, Proteins, and Membranes |last=Szostak |first=Jack W. |authorlink=Jack W. Szostak |date=5 February 2015 |publisher=] |location=Chevy Chase (CDP), MD |accessdate=2015-06-16}}</ref> Such autocatalytic systems of RNA capable of self-sustained replication have been identified.<ref>{{cite journal |last1=Lincoln |first1=Tracey A. |last2=Joyce |first2=Gerald F. |date=27 February 2009 |title=Self-Sustained Replication of an RNA Enzyme |journal=Science |location=Washington, D.C. |publisher=American Association for the Advancement of Science |volume=323 |issue=5918 |pages=1229–1232 |bibcode=2009Sci...323.1229L |doi=10.1126/science.1167856 |issn=0036-8075 |pmc=2652413 |pmid=19131595}}</ref> The RNA replication systems, which include two ribozymes that catalyze each other's synthesis, showed a doubling time of the product of about one hour, and were subject to natural selection under the conditions that existed in the experiment.<ref name="Joyce2009" /> In evolutionary competition experiments, this led to the emergence of new systems which replicated more efficiently.<ref name="Robertson2012" /> This was the first demonstration of evolutionary adaptation occurring in a molecular genetic system.<ref name="Joyce2009">{{cite journal |last=Joyce |first=Gerald F. |year=2009 |title=Evolution in an RNA world |url=http://symposium.cshlp.org/content/74/17.full.pdf+html |format=PDF |journal=Cold Spring Harbor Perspectives in Biology |location=Cold Spring Harbor, NY |publisher=Cold Spring Harbor Laboratory Press |volume=74 |issue=Evolution: The Molecular Landscape |pages=17–23 |doi=10.1101/sqb.2009.74.004 |issn=1943-0264 |pmc=2891321 |pmid=19667013 |accessdate=2015-06-16}}</ref> | |||
In line with the RNA world hypothesis, much of modern biology's templated protein biosynthesis is done by RNA molecules—namely tRNAs and the ribosome (consisting of both protein and rRNA components). The most central reaction of peptide bond synthesis is understood to be carried out by base catalysis by the 23S rRNA domain V.<ref name=":1">{{Cite journal |last1=Tamura |first1=K. |last2=Alexander |first2=R. W. |date=2004-05-01 |title=Peptide synthesis through evolution |journal=Cellular and Molecular Life Sciences |language=en |volume=61 |issue=11 |pages=1317–1330 |doi=10.1007/s00018-004-3449-9 |pmid=15170510 |issn=1420-9071|pmc=11138682 }}</ref> Experimental evidence has demonstrated successful di- and tripeptide synthesis with a system consisting of only aminoacyl phosphate adaptors and RNA guides, which could be a possible stepping stone between an RNA world and modern protein synthesis.<ref name=":1" /><ref>{{Cite journal |last1=Tamura |first1=Koji |last2=Schimmel |first2=Paul |date=2003-07-22 |title=Peptide synthesis with a template-like RNA guide and aminoacyl phosphate adaptors |journal=Proceedings of the National Academy of Sciences |language=en |volume=100 |issue=15 |pages=8666–8669 |doi=10.1073/pnas.1432909100 |doi-access=free |issn=0027-8424 |pmc=166369 |pmid=12857953|bibcode=2003PNAS..100.8666T }}</ref> Aminoacylation ribozymes that can charge tRNAs with their cognate amino acids have also been selected in in vitro experimentation.<ref name=":2">{{Cite journal |last1=Pressman |first1=Abe D. |last2=Liu |first2=Ziwei |last3=Janzen |first3=Evan |last4=Blanco |first4=Celia |last5=Müller |first5=Ulrich F. |last6=Joyce |first6=Gerald F. |last7=Pascal |first7=Robert |last8=Chen |first8=Irene A. |date=2019-04-17 |title=Mapping a Systematic Ribozyme Fitness Landscape Reveals a Frustrated Evolutionary Network for Self-Aminoacylating RNA |journal=Journal of the American Chemical Society |language=en |volume=141 |issue=15 |pages=6213–6223 |doi=10.1021/jacs.8b13298 |issn=0002-7863 |pmc=6548421 |pmid=30912655|bibcode=2019JAChS.141.6213P }}</ref> The authors also extensively mapped fitness landscapes within their selection to find that chance emergence of active sequences was more important that sequence optimization.<ref name=":2" /> | |||
=== Early functional peptides === | |||
Depending on the specific definition used, life can be considered to have emerged when RNA chains began to express the basic conditions necessary for natural selection to operate as conceived by Darwin: ], variation of type, and differential reproductive output. The fitness of an RNA replicator (its per capita rate of increase) would likely be a function of its adaptive capacities that are intrinsic (in the sense that they were determined by the nucleotide sequence) and the availability of its resources.<ref name="Bernstein">{{cite journal |last1=Bernstein |first1=Harris |last2=Byerly |first2=Henry C. |last3=Hopf |first3=Frederick A. |last4=Michod |first4=Richard A. |last5=Vemulapalli |first5=G. Krishna |display-authors=3 |date=June 1983 |title=The Darwinian Dynamic |journal=] |location=Chicago, IL |publisher=] |volume=58 |issue=2 |pages=185–207 |doi=10.1086/413216 |issn=0033-5770 |jstor=2828805}}</ref><ref name="Michod 1999">{{harvnb|Michod|1999}}</ref> The three primary adaptive capacities may have been (1) the capacity to replicate with moderate fidelity, giving rise to both heritability while allowing variation of type, (2) the capacity to avoid decay, and (3) the capacity to acquire and process resources.<ref name="Bernstein" /><ref name="Michod 1999" /> These capacities would have been determined initially by the folded configurations of the RNA replicators that, in turn, would be encoded in their individual nucleotide sequences. Relative reproductive success, competition, between different replicators would have depended on the relative values of their adaptive capacities. | |||
The first proteins would have had to arise without a fully-fledged system of protein biosynthesis. As discussed above, numerous mechanisms for the prebiotic synthesis of polypeptides exist. However, these random sequence peptides would not have likely had biological function. Thus, significant study has gone into exploring how early functional proteins could have arisen from random sequences. First, some evidence on hydrolysis rates shows that abiotically plausible peptides likely contained significant "nearest-neighbor" biases.<ref>{{Cite journal |last1=Tyagi |first1=Sanjay |last2=Ponnamperuma |first2=Cyril |date=1990-05-01 |title=Nonrandomness in prebiotic peptide synthesis |journal=Journal of Molecular Evolution |language=en |volume=30 |issue=5 |pages=391–399 |doi=10.1007/BF02101111 |pmid=2111852 |bibcode=1990JMolE..30..391T |issn=1432-1432}}</ref> This could have had some effect on early protein sequence diversity. In other work by Anthony Keefe and Jack Szostak, ] selection on a library of 6*10<sup>12</sup> 80-mers was used to search for sequences with ATP binding activity. They concluded that approximately 1 in 10<sup>11</sup> random sequences had ATP binding function.<ref>{{Cite journal |title=Functional proteins from a random-sequence library |doi=10.1038/35070613 |pmc=4476321 |pmid=11287961 | date=2001 | last1=Keefe | first1=Anthony D. | last2=Szostak | first2=Jack W. | journal=Nature | volume=410 | issue=6829 | pages=715–718 |bibcode=2001Natur.410..715K }}</ref> While this is a single example of functional frequency in the random sequence space, the methodology can serve as a powerful simulation tool for understanding early protein evolution.<ref>{{Cite journal |last1=Tong |first1=Cher Ling |last2=Lee |first2=Kun-Hwa |last3=Seelig |first3=Burckhard |date=June 2021 |title=De novo proteins from random sequences through in vitro evolution |journal=Current Opinion in Structural Biology |language=en |volume=68 |pages=129–134 |doi=10.1016/j.sbi.2020.12.014 |pmc=8222087 |pmid=33517151|bibcode=2021COStB..68..129T }}</ref> | |||
=== |
=== Phylogeny and LUCA === | ||
It is possible that a different type of nucleic acid, such as ], ] or ], was the first to emerge as a self-reproducing molecule, only later replaced by RNA.<ref>{{cite journal |last=Orgel |first=Leslie E. |date=17 November 2000 |title=A Simpler Nucleic Acid |journal=Science |location=Washington, D.C. |publisher=American Association for the Advancement of Science |volume=290 |issue=5495 |pages=1306–1307 |doi=10.1126/science.290.5495.1306 |issn=0036-8075 |pmid=11185405}}</ref><ref>{{cite journal |last=Nelson |first=Kevin E. |last2=Levy |first2=Matthew |last3=Miller |first3=Stanley L. |date=11 April 2000 |title=Peptide nucleic acids rather than RNA may have been the first genetic molecule |journal=Proc. Natl. Acad. Sci. U.S.A. |location=Washington, D.C. |publisher=National Academy of Sciences |volume=97 |issue=8 |pages=3868–3871 |bibcode=2000PNAS...97.3868N |doi=10.1073/pnas.97.8.3868 |issn=0027-8424 |pmc=18108 |pmid=10760258}}</ref> Larralde ''et al.'', say that "the generally accepted prebiotic synthesis of ], the formose reaction, yields numerous sugars without any selectivity."<ref>{{cite journal |last1=Larralde |first1=Rosa |last2=Robertson |first2=Michael P. |last3=Miller |first3=Stanley L. |date=29 August 1995 |title=Rates of Decomposition of Ribose and Other Sugars: Implications for Chemical Evolution |url=http://www.pnas.org/content/92/18/8158.full.pdf |format=PDF |journal=Proc. Natl. Acad. Sci. U.S.A. |location=Washington, D.C. |publisher=National Academy of Sciences |volume=92 |issue=18 |pages=8158–8160 |bibcode=1995PNAS...92.8158L |doi=10.1073/pnas.92.18.8158 |issn=0027-8424 |pmc=41115 |pmid=7667262}}</ref> and they conclude that their "results suggest that the backbone of the first genetic material could not have contained ribose or other sugars because of their instability." The ester linkage of ribose and phosphoric acid in RNA is known to be prone to hydrolysis.<ref>{{cite journal |last=Lindahl |first=Tomas |authorlink=Tomas Lindahl |date=22 April 1993 |title=Instability and decay of the primary structure of DNA |journal=Nature |location=London |publisher=Nature Publishing Group |volume=362 |issue=6422 |pages=709–715 |bibcode=1993Natur.362..709L |doi=10.1038/362709a0 |issn=0028-0836 |pmid=8469282}}</ref> | |||
{{further|Last universal common ancestor}} | |||
Pyrimidine ribonucleosides and their respective nucleotides have been prebiotically synthesised by a sequence of reactions which by-pass the free sugars, and are assembled in a stepwise fashion by using nitrogenous or oxygenous chemistries. Sutherland has demonstrated high yielding routes to cytidine and uridine ribonucleotides built from small 2 and 3 carbon fragments such as ], ] or ], ] and ]. One of the steps in this sequence allows the isolation of ] ribose aminooxazoline if the enantiomeric excess of glyceraldehyde is 60% or greater.<ref>{{cite journal |last1=Anastasi |first1=Carole |last2=Crowe |first2=Michael A. |last3=Powner |first3=Matthew W. |last4=Sutherland |first4=John D. |date=18 September 2006 |title=Direct Assembly of Nucleoside Precursors from Two- and Three-Carbon Units |journal=Angewandte Chemie International Edition |location=Weinheim, Germany |publisher=Wiley-VCH on behalf of the German Chemical Society |volume=45 |issue=37 |pages=6176–6179 |doi=10.1002/anie.200601267 |issn=1433-7851 |pmid=16917794}}</ref> This can be viewed as a prebiotic purification step, where the said compound spontaneously crystallised out from a mixture of the other pentose aminooxazolines. Ribose aminooxazoline can then react with cyanoacetylene in a mild and highly efficient manner to give the alpha cytidine ribonucleotide. Photoanomerization with UV light allows for inversion about the 1' anomeric centre to give the correct beta ].<ref>{{cite journal |last1=Powner |first1=Matthew W. |last2=Sutherland |first2=John D. |date=13 October 2008 |title=Potentially Prebiotic Synthesis of Pyrimidine β-D-Ribonucleotides by Photoanomerization/Hydrolysis of α-D-Cytidine-2′-Phosphate |journal=] |location=Weinheim, Germany |publisher=Wiley-VCH |volume=9 |issue=15 |pages=2386–2387 |doi=10.1002/cbic.200800391 |url=http://www3.interscience.wiley.com/journal/121410594/abstract |issn=1439-4227 |pmid=18798212}}</ref> In 2009 they showed that the same simple building blocks allow access, via phosphate controlled nucleobase elaboration, to 2',3'-cyclic pyrimidine nucleotides directly, which are known to be able to ] into RNA. This paper also highlights the possibility for the photo-sanitization of the pyrimidine-2',3'-cyclic phosphates.<ref name="pmid19444213" /> | |||
Starting with the work of ] from 1977, ] studies have placed the last universal common ancestor (LUCA) of all modern life-forms between Bacteria and a clade formed by Archaea and ] in the phylogenetic tree of life. It lived over 4 Gya.<ref>{{cite book |url=https://www.springer.com/life+sciences/microbiology/book/978-0-387-98771-2 |title=The ''Archaea'' and the Deeply Branching and Phototrophic ''Bacteria'' |publisher=] |year=2001 |isbn=978-0-387-21609-6 |editor1-last=Boone |editor1-first=David R. |series=Bergey's Manual of Systematic Bacteriology |editor2-last=Castenholz |editor2-first=Richard W. |editor3-last=Garrity |editor3-first=George M. |archive-url=https://web.archive.org/web/20141225112809/http://www.springer.com/life+sciences/microbiology/book/978-0-387-98771-2 |archive-date=25 December 2014 |url-status=live}}{{page needed |date=June 2014}}</ref><ref name="Woese Fox 1977">{{cite journal |last1=Woese |first1=C. R. |last2=Fox |first2=G. E. |year=1977 |title=Phylogenetic structure of the prokaryotic domain: the primary kingdoms. |journal=] |volume=7 |issue=11 |pages=5088–5090 |bibcode=1977PNAS...74.5088W |doi=10.1073/pnas.74.11.5088 |pmc=432104 |pmid=270744 |doi-access=free}}</ref> A minority of studies have placed the LUCA in Bacteria, proposing that Archaea and Eukaryota are evolutionarily derived from within Eubacteria;<ref>{{cite journal |last1=Valas |first1=R. E. |last2=Bourne |first2=P. E. |year=2011 |title=The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon |journal=] |volume=6 |page=16 |doi=10.1186/1745-6150-6-16 |pmc=3056875 |pmid=21356104 |doi-access=free }}</ref> ] suggested in 2006 that the phenotypically diverse bacterial phylum ] contained the LUCA.<ref name="CS2">{{cite journal |last=Cavalier-Smith |first=Thomas |author-link=Thomas Cavalier-Smith |year=2006 |title=Rooting the tree of life by transition analyses |journal=] |volume=1 |page=19 |doi=10.1186/1745-6150-1-19 |pmc=1586193 |pmid=16834776 |doi-access=free }}</ref> | |||
== Origin of biological metabolism == | |||
Research suggests that metabolism-like reactions could have occurred naturally in early oceans, before the first organisms evolved.<ref name="Ralser 2014" /><ref name="Metabolism 2014">{{cite press release |last=Senthilingam |first=Meera |date=25 April 2014 |title=Metabolism May Have Started in Early Oceans Before the Origin of Life |url=http://www.eurekalert.org/pub_releases/2014-04/wt-mmh042314.php |publisher=] |agency=] |accessdate=2015-06-16}}</ref> The findings suggests that metabolism predates the origin of life and evolved through the chemical conditions that prevailed in the world's earliest oceans. Reconstructions in laboratories show that some of these reactions can produce RNA, and some others resemble two essential reaction cascades of metabolism: ] and the ], that provide essential precursors for nucleic acids, amino acids and lipids.<ref name="Metabolism 2014" /> Following are some observed discoveries and related hypotheses. | |||
<gallery mode="packed" heights="200px"> | |||
=== Iron–sulfur world === | |||
File:Phylogenetic tree of life LUCA.svg|] showing the ] (LUCA) at the root. The major clades are the ] on one hand, and the ] and ] on the other. | |||
{{Main|Iron–sulfur world theory}} | |||
</gallery> | |||
In 2016, a set of 355 genes likely present in the LUCA was identified. A total of 6.1 million prokaryotic genes from Bacteria and Archaea were sequenced, identifying 355 protein clusters from among 286,514 protein clusters that were probably common to the LUCA. The results suggest that the LUCA was ] with a Wood–Ljungdahl (reductive Acetyl-CoA) pathway, nitrogen- and carbon-fixing, thermophilic. Its ] suggest dependence upon an environment rich in hydrogen, carbon dioxide, iron, and ]s. Its genetic material was probably DNA, requiring the 4-nucleotide genetic code, messenger RNA, transfer RNA, and ribosomes to translate the code into proteins such as enzymes. LUCA likely inhabited an anaerobic hydrothermal vent setting in a geochemically active environment. It was evidently already a complex organism, and must have had precursors; it was not the first living thing.<ref name="Weiss Sousa Mrnjavac 2016">{{cite journal |last1=Weiss |first1=M. C. |last2=Sousa |first2=F. L. |last3=Mrnjavac |first3=N. |last4=Neukirchen |first4=S. |last5=Roettger |first5=M. |last6=Nelson-Sathi |first6=S. |last7=Martin |first7=W.F. |year=2016 |title=The physiology and habitat of the last universal common ancestor |url=https://www.almendron.com/tribuna/wp-content/uploads/2019/10/the-physiology-and-habitat-of-the-last-universal-common-ancestor.pdf |journal=] |volume=1 |issue=9 |page=16116 |doi=10.1038/NMICROBIOL.2016.116 |pmid=27562259 |s2cid=2997255 |access-date=21 September 2022 |archive-date=29 January 2023 |archive-url=https://web.archive.org/web/20230129185028/https://www.almendron.com/tribuna/wp-content/uploads/2019/10/the-physiology-and-habitat-of-the-last-universal-common-ancestor.pdf |url-status=live }}</ref><ref name="Nature 2016">{{cite journal |title=Early life liked it hot |journal=Nature |volume=535 |issue=7613 |year=2016 |doi=10.1038/535468b |page=468 |s2cid=49905802|doi-access=free }}</ref> The physiology of LUCA has been in dispute.<ref>{{cite journal |last1=Gogarten |first1=Johann Peter |last2=Deamer |first2=David |author2-link=David W. Deamer |date=2016-11-25 |title=Is LUCA a thermophilic progenote? |url=https://zenodo.org/record/895471 |journal=Nature Microbiology |volume=1 |issue=12 |page=16229 |doi=10.1038/nmicrobiol.2016.229 |pmid=27886195 |s2cid=205428194 |access-date=21 September 2022 |archive-date=3 April 2020 |archive-url=https://web.archive.org/web/20200403040656/https://zenodo.org/record/895471 |url-status=live }}</ref><ref>{{cite journal |last1=Catchpole |first1=Ryan |last2=Forterre |first2=Patrick |date=2019 |title=The evolution of Reverse Gyrase suggests a non-hyperthermophilic Last Universal Common Ancestor |url=https://academic.oup.com/mbe/article/36/12/2737/5545984 |journal=Molecular Biology and Evolution |volume=36 |issue=12 |pages=2737–2747 |doi=10.1093/molbev/msz180 |pmid=31504731 |pmc=6878951 |access-date=18 September 2022 |archive-date=27 January 2023 |archive-url=https://web.archive.org/web/20230127162358/https://academic.oup.com/mbe/article/36/12/2737/5545984 |url-status=live }}</ref><ref>{{cite journal |last1=Berkemer |first1=Sarah J. |last2=McGlynn |first2=Shawn E |date=August 8, 2020 |title=A New Analysis of Archaea–Bacteria Domain Separation: Variable Phylogenetic Distance and the Tempo of Early Evolution |url=https://academic.oup.com/mbe/article/37/8/2332/5818498 |journal=Molecular Biology and Evolution |volume=37 |issue=8 |pages=2332–2340 |doi=10.1093/molbev/msaa089 |pmc=7403611 |pmid=32316034 |access-date=21 September 2022 |archive-date=27 January 2023 |archive-url=https://web.archive.org/web/20230127163913/https://academic.oup.com/mbe/article/37/8/2332/5818498 |url-status=live }}</ref> Previous research identified 60 proteins common to all life.<ref>{{cite journal | url=https://pubmed.ncbi.nlm.nih.gov/15035042/ | pmid=15035042 | date=2003 | last1=Koonin | first1=E. V. | title=Comparative genomics, minimal gene-sets and the last universal common ancestor | journal=Nature Reviews. Microbiology | volume=1 | issue=2 | pages=127–136 | doi=10.1038/nrmicro751 }}</ref> | |||
In the 1980s, ], encouraged and supported by ],<ref>{{cite journal |last=Yue-Ching Ho |first=Eugene |date=July–September 1990 |title=Evolutionary Epistemology and Sir Karl Popper's Latest Intellectual Interest: A First-Hand Report |url=http://www.tkpw.net/hk-ies/n15/ |journal=Intellectus |location=Hong Kong |publisher=Hong Kong Institute of Economic Science |volume=15 |pages=1–3 |oclc=26878740 |accessdate=2012-08-13}}</ref><ref>{{cite news |last=Wade |first=Nicholas |date=22 April 1997 |title=Amateur Shakes Up Ideas on Recipe for Life |url=http://www.nytimes.com/1997/04/22/science/amateur-shakes-up-ideas-on-recipe-for-life.html?src=pm&pagewanted=2&pagewanted=all |newspaper=The New York Times |location=New York |publisher=The New York Times Company |issn=0362-4331 |accessdate=2015-06-16}}</ref><ref>{{cite journal |last=Popper |first=Karl R. |authorlink=Karl Popper |date=29 March 1990 |title=Pyrite and the origin of life |journal=Nature |location=London |publisher=Nature Publishing Group |volume=344 |issue=6265 |page=387 |bibcode=1990Natur.344..387P |doi=10.1038/344387a0 |issn=0028-0836}}</ref> postulated in his iron–sulfur world, a theory of the evolution of pre-biotic chemical pathways as the starting point in the evolution of life. It presents a consistent system of tracing today's biochemistry back to ancestral reactions that provide alternative pathways to the synthesis of organic building blocks from simple gaseous compounds. | |||
<gallery mode="packed" heights="300px"> | |||
In contrast to the classical Miller experiments, which depend on external sources of energy (such as simulated lightning or ultraviolet ]), "Wächtershäuser systems" come with a built-in source of energy, ]s of iron (iron pyrite) and other minerals . The energy released from redox reactions of these metal sulfides is available for the synthesis of organic molecules. It is therefore hypothesized that such systems may be able to evolve into autocatalytic sets of self-replicating, metabolically active entities that predate the life forms known today.<ref name="Ralser 2014" /><ref name="Metabolism 2014" /> Experiments with such sulfides in an aqueous environment at 100 °C produced a relatively small yield of ]s (0.4% to 12.4%) and a smaller yield of ]s (0.10%) although under the same conditions, dipeptides were quickly broken down.<ref>{{cite journal |last1=Huber |first1=Claudia |last2=Wächtershäuser |first2=Günter |authorlink2=Günter Wächtershäuser |date=31 July 1998 |title=Peptides by Activation of Amino Acids with CO on (Ni,Fe)S Surfaces: Implications for the Origin of Life |journal=Science |location=Washington, D.C. |publisher=American Association for the Advancement of Science |volume=281 |issue=5377 |pages=670–672 |bibcode=1998Sci...281..670H |doi=10.1126/science.281.5377.670 |issn=0036-8075 |pmid=9685253}}</ref> | |||
File:LUCA systems and environment.svg|LUCA systems and environment included the ].<ref name="Weiss Sousa Mrnjavac 2016"/> | |||
</gallery> | |||
Leslie Orgel argued that early translation machinery for the genetic code would be susceptible to ]. Geoffrey Hoffmann however showed that such machinery can be stable in function against "Orgel's paradox".<ref>{{cite journal |last=Hoffmann |first=Geoffrey W. |author-link=Geoffrey W. Hoffmann |date=25 June 1974 |title=On the origin of the genetic code and the stability of the translation apparatus |journal=] |volume=86 |issue=2 |pages=349–362 |doi=10.1016/0022-2836(74)90024-2 |pmid=4414916}}</ref><ref>{{cite journal |last=Orgel |first=Leslie E. |date=April 1963 |title=The Maintenance of the Accuracy of Protein Synthesis and its Relevance to Ageing |journal=] |volume=49 |issue=4 |pages=517–521 |bibcode=1963PNAS...49..517O |doi=10.1073/pnas.49.4.517 |pmc=299893 |pmid=13940312 |doi-access=free}}</ref><ref>{{cite journal |last=Hoffmann |first=Geoffrey W. |date=October 1975 |title=The Stochastic Theory of the Origin of the Genetic Code |journal=] |volume=26 |pages=123–144 |bibcode=1975ARPC...26..123H |doi=10.1146/annurev.pc.26.100175.001011}}</ref> Metabolic reactions that have also been inferred in LUCA are the incomplete ], ], the ], ], ], and ].<ref>{{Cite journal |last1=Harrison |first1=Stuart A. |last2=Palmeira |first2=Raquel Nunes |last3=Halpern |first3=Aaron |last4=Lane |first4=Nick |date=2022-11-01 |title=A biophysical basis for the emergence of the genetic code in protocells |journal=Biochimica et Biophysica Acta (BBA) - Bioenergetics |volume=1863 |issue=8 |page=148597 |doi=10.1016/j.bbabio.2022.148597 |pmid=35868450 |s2cid=250707510 |doi-access=free }}</ref><ref>{{Cite journal |last1=Harrison |first1=Stuart A. |last2=Lane |first2=Nick |date=2018-12-12 |title=Life as a guide to prebiotic nucleotide synthesis |journal=Nature Communications |volume=9 |issue=1 |page=5176 |doi=10.1038/s41467-018-07220-y |pmid=30538225 |pmc=6289992 |bibcode=2018NatCo...9.5176H}}</ref> | |||
Several models reject the idea of the self-replication of a "naked-gene" but postulate the emergence of a primitive metabolism which could provide a safe environment for the later emergence of RNA replication. The centrality of the ] (citric acid cycle) to energy production in aerobic organisms, and in drawing in carbon dioxide and hydrogen ions in biosynthesis of complex organic chemicals, suggests that it was one of the first parts of the metabolism to evolve.<ref name="Lane 2009">{{harvnb|Lane|2009}}</ref> Somewhat in agreement with these notions, ] Michael Russell has proposed that "the purpose of life is to hydrogenate carbon dioxide" (as part of a "metabolism-first," rather than a "genetics-first," scenario).<ref name="Musser">{{cite web |url=http://blogs.scientificamerican.com/observations/how-life-arose-on-earth-and-how-a-singularity-might-bring-it-down/ |title=How Life Arose on Earth, and How a Singularity Might Bring It Down |last=Musser |first=George |authorlink=George Musser |date=23 September 2011 |work=Observations |publisher=''Scientific American'' |type=Blog |issn=0036-8733 |accessdate=2015-06-17}}</ref><ref name="Carroll">{{cite web |url=http://blogs.discovermagazine.com/cosmicvariance/2010/03/10/free-energy-and-the-meaning-of-life/ |title=Free Energy and the Meaning of Life |last=Carroll |first=Sean |authorlink=Sean M. Carroll |date=10 March 2010 |work=Cosmic Variance |type=Blog |publisher=''Discover'' |issn=0274-7529 |accessdate=2015-06-17}}</ref> ] ] of ] has proposed that thermodynamically, life was bound to eventually arrive, as based on established physics, he mathematically indicates "...that when a group of atoms is driven by an external source of energy (like the sun or chemical fuel) and surrounded by a heat bath (like the ocean or atmosphere), it will often gradually restructure itself in order to dissipate increasingly more energy. This could mean that under certain conditions, matter inexorably acquires the key physical attribute associated with life."<ref>{{cite journal |last=Wolchover |first=Natalie |date=22 January 2014 |title=A New Physics Theory of Life |url=https://www.quantamagazine.org/20140122-a-new-physics-theory-of-life/ |journal=Quanta Magazine |location=New York |publisher=] |accessdate=2015-06-17}}</ref><ref>{{cite journal |last=England |first=Jeremy L. |authorlink=Jeremy England |date=28 September 2013 |title=Statistical physics of self-replication |url=http://www.englandlab.com/uploads/7/8/0/3/7803054/2013jcpsrep.pdf |format=PDF |journal=] |location=College Park, MD |publisher=] |volume=139 |page=121923 |arxiv=1209.1179 |bibcode=2013JChPh.139l1923E |doi=10.1063/1.4818538 |issn=0021-9606 |accessdate=2015-06-18}}</ref> | |||
== Suitable geological environments == | |||
One of the earliest incarnations of this idea was put forward in 1924 with Oparin's notion of primitive self-replicating vesicles which predated the discovery of the structure of DNA. Variants in the 1980s and 1990s include Wächtershäuser's iron–sulfur world theory and models introduced by ] based on the chemistry of ]s. More abstract and theoretical arguments for the plausibility of the emergence of metabolism without the presence of genes include a mathematical model introduced by ] in the early 1980s and ]'s notion of collectively autocatalytic sets, discussed later in that decade. | |||
{{further|Alternative abiogenesis scenarios}} | |||
Orgel summarized his analysis of the proposal by stating, "There is at present no reason to expect that multistep cycles such as the reductive citric acid cycle will self-organize on the surface of FeS/FeS<sub>2</sub> or some other mineral."<ref>{{cite journal |last=Orgel |first=Leslie E. |date=7 November 2000 |title=Self-organizing biochemical cycles |journal=Proc. Natl. Acad. Sci. U.S.A. |location=Washington, D.C. |publisher=National Academy of Sciences |volume=97 |issue=23 |pages=12503–12507 |bibcode=2000PNAS...9712503O |doi=10.1073/pnas.220406697 |issn=0027-8424 |pmc=18793 |pmid=11058157}}</ref> It is possible that another type of metabolic pathway was used at the beginning of life. For example, instead of the reductive citric acid cycle, the "open" ] pathway (another one of the five recognised ways of carbon dioxide fixation in nature today) would be compatible with the idea of self-organisation on a metal sulfide surface. The key enzyme of this pathway, ]/] harbours mixed nickel-iron-sulfur clusters in its reaction centers and catalyses the formation of acetyl-CoA (which may be regarded as a modern form of acetyl-thiol) in a single step. | |||
A variety of ] for an origin of life. These theories are often in competition with one another as there are many differing views of prebiotic compound availability, geophysical setting, and early life characteristics. The first organism on Earth likely looked different from ]. Between the first appearance of life and where all modern phylogenies began branching, an unknown amount of time passed, with unknown gene transfers, extinctions, and evolutionary adaptation to various environmental niches.<ref>{{Cite journal |last1=Cantine |first1=Marjorie D. |last2=Fournier |first2=Gregory P. |date=2018-03-01 |title=Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor |journal=Origins of Life and Evolution of Biospheres |volume=48 |issue=1 |pages=35–54 |doi=10.1007/s11084-017-9542-5 |pmid=28685374 |bibcode=2018OLEB...48...35C |hdl=1721.1/114219 |s2cid=254888920 |url=https://link.springer.com/article/10.1007/s11084-017-9542-5 |hdl-access=free |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131154929/https://link.springer.com/article/10.1007/s11084-017-9542-5 |url-status=live }}</ref> One major shift is believed to be from the RNA world to an RNA-DNA-protein world. Modern phylogenies provide more pertinent genetic evidence about LUCA than about its precursors.<ref>{{Cite journal |last=Mat |first=Wai-Kin |date=May 1, 2008 |title=The genomics of LUCA |url=https://article.imrpress.com/bri/Landmark/articles/pdf/Landmark3103.pdf |journal=Frontiers in Bioscience |volume=13 |issue=14 |pages=5605–5613 |doi=10.2741/3103 |pmid=18508609 |access-date=8 December 2023 |archive-date=16 June 2022 |archive-url=https://web.archive.org/web/20220616034359/https://article.imrpress.com/bri/Landmark/articles/pdf/Landmark3103.pdf |url-status=live }}</ref> | |||
=== Zn-World hypothesis === | |||
The Zn-World (zinc world) theory of Armen Y. Mulkidjanian<ref name="Mulkidjanian">{{cite journal |last=Mulkidjanian |first=Armen Y. |date=24 August 2009 |title=On the origin of life in the zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth |journal=Biology Direct |location=London |publisher=BioMed Central |volume=4 |page=26 |doi=10.1186/1745-6150-4-26 |issn=1745-6150}}</ref> is an extension of Wächtershäuser's pyrite hypothesis. Wächtershäuser based his theory of the initial chemical processes leading to informational molecules (i.e., RNA, peptides) on a regular mesh of electric charges at the surface of pyrite that may have made the primeval ] thermodynamically more favourable by attracting reactants and arranging them appropriately relative to each other.<ref>{{cite journal |last=Wächtershäuser |first=Günter |date=December 1988 |title=Before Enzymes and Templates: Theory of Surface Metabolism |url=http://mmbr.asm.org/content/52/4/452.full.pdf+html |format=PDF |journal=] |location=Washington, D.C. |publisher=] |volume=52 |pages=452–484 |issue=4 |issn=0146-0749 |pmc=373159 |pmid=3070320}}</ref> The Zn-World theory specifies and differentiates further.<ref name="Mulkidjanian" /><ref>{{cite journal |last=Mulkidjanian |first=Armen Y. |last2=Galperin |first2=Michael Y. |date=24 August 2009 |title=On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth |journal=Biology Direct |location=London |publisher=BioMed Central |volume=4 |page=27 |doi=10.1186/1745-6150-4-27 |issn=1745-6150}}</ref> Hydrothermal fluids rich in H<sub>2</sub>S interacting with cold primordial ocean (or Darwin's "warm little pond") water leads to the precipitation of metal sulfide particles. Oceanic vent systems and other hydrothermal systems have a zonal structure reflected in ancient ] (VMS) of hydrothermal origin. They reach many kilometers in diameter and date back to the ] Eon. Most abundant are pyrite (FeS<sub>2</sub>), ] (CuFeS<sub>2</sub>), and ] (ZnS), with additions of ] (PbS) and ] (MnS). ZnS and MnS have a unique ability to store radiation energy, e.g., provided by UV light. Since during the relevant time window of the origins of replicating molecules the primordial atmospheric pressure was high enough (>100 bar, about 100 atmospheres) to precipitate near the Earth's surface and UV irradiation was 10 to 100 times more intense than now, the unique photosynthetic properties mediated by ZnS provided just the right energy conditions to energize the synthesis of informational and metabolic molecules and the selection of photostable nucleobases. | |||
The most popular hypotheses for settings for the origin of life are deep sea hydrothermal vents and surface bodies of water. Surface waters can be classified into hot springs, moderate temperature lakes and ponds, and cold settings. | |||
The Zn-World theory has been further filled out with experimental and theoretical evidence for the ionic constitution of the interior of the first proto-cells before archaea, bacteria and ] evolved. ] noted the resemblance of organism fluids such as blood, and lymph to seawater;<ref>{{cite journal |last=Macallum |first=A. B. |authorlink=Archibald Macallum |date=1 April 1926 |title=The Paleochemistry of the body fluids and tissues |url=http://physrev.physiology.org/content/6/2/316 |journal=] |location=Bethesda, MD |publisher=] |volume=6 |issue=2 |pages=316–357 |issn=0031-9333 |accessdate=2015-06-18}}</ref> however, the inorganic composition of all cells differ from that of modern seawater, which led Mulkidjanian and colleagues to reconstruct the "hatcheries" of the first cells combining geochemical analysis with ] scrutiny of the inorganic ion requirements of universal components of modern cells. The authors conclude that ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K<sup>+</sup>, Zn<sup>2+</sup>, Mn<sup>2+</sup>, and phosphate. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in what we today call marine settings but is compatible with emissions of vapor-dominated zones of what we today call inland geothermal systems. Under the oxygen depleted, CO<sub>2</sub>-dominated primordial atmosphere, the chemistry of water condensates and exhalations near geothermal fields would resemble the internal milieu of modern cells. Therefore, the precellular stages of evolution may have taken place in shallow "Darwin ponds" lined with porous ] mixed with metal sulfides and enriched in K<sup>+</sup>, Zn<sup>2+</sup>, and phosphorus compounds.<ref>{{cite journal |last1=Mulkidjanian |first1=Armen Y. |last2=Bychkov |first2=Andrew Yu. |last3=Dibrova |first3=Daria V. |last4=Galperin |first4=Michael Y. |last5=Koonin |first5=Eugene V. |display-authors=3 |date=3 April 2012 |title=Origin of first cells at terrestrial, anoxic geothermal fields |journal=Proc. Natl. Acad. Sci. U.S.A. |location=Washington, D.C. |publisher=National Academy of Sciences |volume=109 |issue=14 |pages=E821–E830 |bibcode=2012PNAS..109E.821M |doi=10.1073/pnas.1117774109 |issn=1091-6490 |pmc=3325685 |pmid=22331915}}</ref><ref>For a deeper integrative version of this hypothesis, see in particular {{harvnb|Lankenau|2011|pp=225–286}}, interconnecting the "Two RNA worlds" concept and other detailed aspects; and {{cite journal |last1=Davidovich |first1=Chen |last2=Belousoff |first2=Matthew |last3=Bashan |first3=Anat |last4=Yonath |first4=Ada |authorlink4=Ada Yonath |year=September 2009 |title=The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery |journal=Research in Microbiology |location=Amsterdam, the Netherlands |publisher=Elsevier |volume=160 |issue=7 |pages=487–492 |doi=10.1016/j.resmic.2009.07.004 |issn=1769-7123 |pmid=19619641}}</ref> | |||
=== Deep sea |
=== Deep sea hydrothermal vents === | ||
]']] | |||
==== Hot fluids ==== | |||
The deep sea vent, or alkaline hydrothermal vent, theory for the origin of life on Earth posits that life may have begun at submarine hydrothermal vents,<ref name="hydrothermal vents NASA 2014">{{cite web |url=https://astrobiology.nasa.gov/articles/2014/6/24/hydrothermal-vents-could-explain-chemical-precursors-to-life/ |title=Hydrothermal Vents Could Explain Chemical Precursors to Life |last=Schirber |first=Michael |date=24 June 2014 |website=NASA Astrobiology: Life in the Universe |publisher=NASA |accessdate=2015-06-19}}</ref> William Martin and Michael Russell have suggested "that life evolved in structured iron monosulphide precipitates in a seepage site hydrothermal mound at a redox, pH and temperature gradient between sulphide-rich hydrothermal fluid and iron(II)-containing waters of the Hadean ocean floor. The naturally arising, three-dimensional compartmentation observed within fossilized seepage-site metal sulphide precipitates indicates that these inorganic compartments were the precursors of cell walls and membranes found in free-living prokaryotes. The known capability of FeS and NiS to catalyse the synthesis of the acetyl-methylsulphide from carbon monoxide and methylsulphide, constituents of hydrothermal fluid, indicates that pre-biotic syntheses occurred at the inner surfaces of these metal-sulphide-walled compartments,..."<ref name="Martin2003">{{cite journal |last1=Martin |first1=William |authorlink1=William F. Martin |last2=Russell |first2=Michael J. |date=29 January 2003 |title=On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells |journal=Philosophical Transactions of the Royal Society B |location=London |publisher=Royal Society |volume=358 |issue=1429 |pages=59–83; discussion 83–85 |doi=10.1098/rstb.2002.1183 |issn=0962-8436 |pmid=12594918 |pmc=1693102}}</ref> These form where hydrogen-rich fluids emerge from below the sea floor, as a result of ] of ultra-] ] with seawater and a pH interface with carbon dioxide-rich ocean water. The vents form a sustained chemical energy source derived from redox reactions, in which electron donors, such as molecular hydrogen, react with electron acceptors, such as carbon dioxide (see ]). These are highly ]s.<ref group=note>The reactions are:<br /> | |||
'''Reaction 1''': Fayalite + water → magnetite + aqueous silica + hydrogen'' | |||
{{further|Hydrothermal vent}} | |||
] are putative fossilized ]s, found in white smoker ] precipitates. They may have lived as early as 4.28 Gya (billion years ago), relatively soon after the ] 4.41 Gya, not long after the ] 4.54 Gya.<ref name="NAT-20170301"/>]] | |||
Early micro-fossils may have come from a hot world of gases such as methane, ammonia, carbon dioxide, and ], toxic to much current life.<ref>{{cite book |last=Brasier |first=M. D. |year=2012 |title=Secret Chambers: The Inside Story of Cells and Complex Life |publisher=Oxford University Press |page=298}}</ref> Analysis of the ] places thermophilic and hyperthermophilic bacteria and archaea closest to the root, suggesting that life may have evolved in a hot environment.<ref>Ward, Peter & ], op cit, p. 42</ref> The deep sea or alkaline hydrothermal vent theory posits that life began at submarine hydrothermal vents.<ref name="Colín-García 2016">{{cite journal |last1=Colín-García |first1=M. |last2=Heredia |first2=A. |last3=Cordero |first3=G. |last4=Camprubí |first4=A. |last5=Negrón-Mendoza |first5=A. |last6=Ortega-Gutiérrez |first6=F. |last7=Berald |first7=H. |last8=Ramos-Bernal |first8=S. |display-authors=3 |year=2016 |title=Hydrothermal vents and prebiotic chemistry: a review |url=http://boletinsgm.igeolcu.unam.mx/bsgm/index.php/component/content/article/309-sitio/articulos/cuarta-epoca/6803/1620-6803-13-colin |journal=Boletín de la Sociedad Geológica Mexicana |volume=68 |issue=3 |pages=599–620 |url-status=live |archive-url=https://web.archive.org/web/20170818175803/http://boletinsgm.igeolcu.unam.mx/bsgm/index.php/component/content/article/309-sitio/articulos/cuarta-epoca/6803/1620-6803-13-colin |archive-date=18 August 2017 |doi=10.18268/BSGM2016v68n3a13 |doi-access=free}}</ref><ref name="hydrothermal vents NASA 2014">{{cite web |url=https://astrobiology.nasa.gov/articles/2014/6/24/hydrothermal-vents-could-explain-chemical-precursors-to-life/ |title=Hydrothermal Vents Could Explain Chemical Precursors to Life |last=Schirber |first=Michael |date=24 June 2014 |website=NASA Astrobiology: Life in the Universe |publisher=NASA |access-date=19 June 2015 |archive-url=https://web.archive.org/web/20141129051724/http://astrobiology.nasa.gov/articles/2014/6/24/hydrothermal-vents-could-explain-chemical-precursors-to-life/ |archive-date=29 November 2014}}</ref> ] and ] have suggested "that life evolved in structured iron monosulphide precipitates in a seepage site hydrothermal mound at a redox, pH, and temperature gradient between sulphide-rich hydrothermal fluid and iron(II)-containing waters of the Hadean ocean floor. The naturally arising, three-dimensional compartmentation observed within fossilized seepage-site metal sulphide precipitates indicates that these inorganic compartments were the precursors of cell walls and membranes found in free-living prokaryotes. The known capability of FeS and NiS to catalyze the synthesis of the acetyl-methylsulphide from carbon monoxide and methylsulphide, constituents of hydrothermal fluid, indicates that pre-biotic syntheses occurred at the inner surfaces of these metal-sulphide-walled compartments".<ref name="Martin2003">{{cite journal |last1=Martin |first1=William |author-link1=William F. Martin |last2=Russell |first2=Michael J. |date=29 January 2003 |title=On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells |journal=] |volume=358 |issue=1429 |pages=59–83; discussion 83–85 |doi=10.1098/rstb.2002.1183 |pmid=12594918 |pmc=1693102}}</ref> | |||
These form where hydrogen-rich fluids emerge from below the sea floor, as a result of ] of ultra-] ] with seawater and a pH interface with carbon dioxide-rich ocean water. The vents form a sustained chemical energy source derived from redox reactions, in which electron donors (molecular hydrogen) react with electron acceptors (carbon dioxide); see ]. These are ]s.<ref name="Colín-García 2016"/>{{efn|The reactions are:<br/> | |||
'''Reaction 1''': Fayalite + water → magnetite + aqueous silica + hydrogen | |||
:3Fe<sub>2</sub>SiO<sub>4</sub> + 2H<sub>2</sub>O → 2Fe<sub>3</sub>O<sub>4</sub> + 3SiO<sub>2</sub> + 2H<sub>2</sub> | :3Fe<sub>2</sub>SiO<sub>4</sub> + 2H<sub>2</sub>O → 2Fe<sub>3</sub>O<sub>4</sub> + 3SiO<sub>2</sub> + 2H<sub>2</sub> | ||
'''Reaction 2''': |
'''Reaction 2''': Forsterite + aqueous silica → serpentine | ||
:3Mg<sub>2</sub>SiO<sub>4</sub> + SiO<sub>2</sub> + 4H<sub>2</sub>O → 2Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> | :3Mg<sub>2</sub>SiO<sub>4</sub> + SiO<sub>2</sub> + 4H<sub>2</sub>O → 2Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> | ||
'''Reaction 3''': |
'''Reaction 3''': Forsterite + water → serpentine + brucite | ||
:2Mg<sub>2</sub>SiO<sub>4</sub> + 3H<sub>2</sub>O → Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> + Mg(OH)<sub>2</sub> | :2Mg<sub>2</sub>SiO<sub>4</sub> + 3H<sub>2</sub>O → Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> + Mg(OH)<sub>2</sub> | ||
Reaction 3 describes the hydration of olivine with water only to yield ] and Mg(OH)<sub>2</sub> (]). Serpentine is stable at high pH in the presence of brucite like calcium silicate hydrate, (]) phases formed along with ] (Ca(OH)<sub>2</sub>) in hardened ] paste after the hydration of ] (Ca<sub>2</sub>SiO<sub>4</sub>), the artificial calcium equivalent of forsterite. | Reaction 3 describes the hydration of olivine with water only to yield ] and Mg(OH)<sub>2</sub> (]). Serpentine is stable at high pH in the presence of brucite like calcium silicate hydrate, (]) phases formed along with ] (Ca(OH)<sub>2</sub>) in hardened ] paste after the hydration of ] (Ca<sub>2</sub>SiO<sub>4</sub>), the artificial calcium equivalent of forsterite. | ||
Analogy of reaction 3 with belite hydration in ordinary Portland cement: ''Belite + water → C-S-H phase + portlandite'' | Analogy of reaction 3 with belite hydration in ordinary Portland cement: ''Belite + water → C-S-H phase + portlandite'' | ||
:2 Ca<sub>2</sub>SiO<sub>4</sub> + 4 H<sub>2</sub>O → 3 CaO · 2 SiO<sub>2</sub> · 3 H<sub>2</sub>O + Ca(OH)<sub>2</sub> |
:2 Ca<sub>2</sub>SiO<sub>4</sub> + 4 H<sub>2</sub>O → 3 CaO · 2 SiO<sub>2</sub> · 3 H<sub>2</sub>O + Ca(OH)<sub>2</sub>}} | ||
==== Chemiosmotic gradient ==== | |||
Michael Russell demonstrated that alkaline vents created an abiogenic ] (PMF) ] gradient,<ref name="Martin2003" /> in which conditions are ideal for an abiogenic hatchery for life. Their microscopic compartments "provide a natural means of concentrating organic molecules," composed of iron-sulfur minerals such as ], endowed these mineral cells with the catalytic properties envisaged by Wächtershäuser.<ref name="Lane 2009" /> This movement of ions across the membrane depends on a combination of two factors: | |||
{{further|Hydrothermal vent|Chemiosmosis#Emergence of chemiosmosis}} | |||
# ] force caused by concentration gradient—all particles including ions tend to diffuse from higher concentration to lower. | |||
] | |||
# Electrostatic force caused by electrical potential gradient—] like ]s H<sup>+</sup> tend to diffuse down the electrical potential, ] in the opposite direction. | |||
These two gradients taken together can be expressed as an ], providing energy for abiogenic synthesis. The proton motive force can be described as the measure of the potential energy stored as a combination of proton and voltage gradients across a membrane (differences in proton concentration and electrical potential). | |||
Russell demonstrated that alkaline vents created an abiogenic ] chemiosmotic gradient,<ref name="Martin2003"/> ideal for abiogenesis. Their microscopic compartments "provide a natural means of concentrating organic molecules," composed of iron-sulfur minerals such as ], endowed these mineral cells with the catalytic properties envisaged by ].<ref name="Lane 2009">{{harvnb|Lane|2009}}</ref> This movement of ions across the membrane depends on a combination of two factors: | |||
] (CO<sub>2</sub>) at the ''Champagne'' vent, ]]] | |||
Jack W. Szostak suggested that geothermal activity provides greater opportunities for the origination of life in open lakes where there is a buildup of minerals. In 2010, based on spectral analysis of sea and hot mineral water, Ignat Ignatov and Oleg Mosin demonstrated that life may have predominantly originated in hot mineral water. The hot mineral water that contains ] and ] ions has the most optimal range.<ref>{{cite journal |last=Ignatov |first=Ignat |last2=Mosin |first2=Oleg V. |year=2013 |title=Possible Processes for Origin of Life and Living Matter with modeling of Physiological Processes of Bacterium ''Bacillus Subtilis'' in Heavy Water as Model System |journal=Journal of Natural Sciences Research |location=New York |publisher=International Institute for Science, Technology and Education |volume=3 |issue=9 |pages=65–76 |issn=2225-0921}}</ref> This is similar case as the origin of life in hydrothermal vents, but with bicarbonate and calcium ions in hot water. This water has a pH of 9–11 and is possible to have the reactions in seawater. According to ], certain reactions of condensation-dehydration of amino acids and nucleotides in individual blocks of peptides and nucleic acids can take place in the primary hydrosphere with pH 9-11 at a later evolutionary stage.<ref>{{harvnb|Calvin|1969}}</ref> Some of these compounds like ] (HCN) have been proven in the experiments of Miller. This is the environment in which the ]s have been created. David Ward of ] described the formation of stromatolites in hot mineral water at the ]. Stromatolites survive in hot mineral water and in proximity to areas with volcanic activity.<ref>{{cite journal |last=Schirber |first=Michael |date=1 March 2010 |title=First Fossil-Makers in Hot Water |url=http://www.astrobio.net/news-exclusive/first-fossil-makers-in-hot-water/ |journal=Astrobiology Magazine |location=New York |publisher=NASA |accessdate=2015-06-19}}</ref> Processes have evolved in the sea near geysers of hot mineral water. In 2011, Tadashi Sugawara from the ] created a protocell in hot water.<ref>{{cite journal |last1=Kurihara |first1=Kensuke |last2=Tamura |first2=Mieko |last3=Shohda |first3=Koh-ichiroh |last4=Toyota |first4=Taro |last5=Suzuki |first5=Kentaro |last6=Sugawara |first6=Tadashi |display-authors=3 |date=October 2011 |title=Self-Reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA |journal=Nature Chemistry |location=London |publisher=Nature Publishing Group |volume=3 |issue=10 |pages=775–781 |bibcode=2011NatCh...3..775K |doi=10.1038/nchem.1127 |issn=1755-4330 |pmid=21941249}}</ref> | |||
# ] force caused by concentration gradient—all particles including ions tend to diffuse from higher concentration to lower. | |||
Experimental research and computer modeling suggest that the surfaces of mineral particles inside hydrothermal vents have catalytic properties to enzymes and are able to create simple organic molecules, such as ] (CH<sub>3</sub>OH) and ], ] and ] acid out of the dissolved CO<sub>2</sub> in the water.<ref name='organics'>{{cite press release |last=Usher |first=Oli |date=27 April 2015 |title=Chemistry of seabed's hot vents could explain emergence of life |url=https://www.ucl.ac.uk/silva/mathematical-physical-sciences/maps-news-publication/maps1526 |publisher=] |accessdate=2015-06-19}}</ref><ref>{{cite journal |last1=Roldan |first1=Alberto |last2=Hollingsworth |first2=Nathan |last3=Roffey |first3=Anna |last4=Islam |first4=Husn-Ubayda |last5=Goodall |first5=Josephine B. M. |last6=Catlow |first6=C. Richard A. |authorlink6=Richard Catlow |last7=Darr |first7=Jawwad A. |last8=Bras |first8=Wim |last9=Sankar |first9=Gopinathan |last10=Holt |first10=Katherine B. |last11=Hogarth |first11=Graeme |last12=de Leeuw |first12=Nora Henriette |display-authors=4 |date=May 2015 |title=Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions |url=http://pubs.rsc.org/en/content/articlepdf/2015/cc/c5cc02078f |format=PDF |journal=Chemical Communications |location=London |publisher=Royal Society of Chemistry |volume=51 |issue=35 |pages=7501–7504 |doi=10.1039/C5CC02078F |issn=1359-7345 |pmid=25835242 |accessdate=2015-06-19}}</ref> | |||
# Electrostatic force caused by electrical potential gradient—]s like ]s H<sup>+</sup> tend to diffuse down the electrical potential, ]s in the opposite direction. | |||
These two gradients taken together can be expressed as an electrochemical gradient, providing energy for abiogenic synthesis. The proton motive force can be described as the measure of the potential energy stored as a combination of proton and voltage gradients across a membrane (differences in proton concentration and electrical potential).<ref name="Lane 2015"/> | |||
=== Thermosynthesis === | |||
<!--File:Champagne vent white smokers.jpg is at the top of this article already--> | |||
Today's bioenergetic process of ] is carried out by either the aforementioned citric acid cycle or the Acetyl-CoA pathway, both of which have been connected to the primordial Iron–sulfur world. In a different approach, the thermosynthesis hypothesis considers the bioenergetic process of ], which plays an essential role in ] and photosynthesis, more basal than fermentation: the ] enzyme, which sustains chemiosmosis, is proposed as the currently extant enzyme most closely related to the first metabolic process.<ref>{{cite journal |last=Muller |first=Anthonie W. J. |date=7 August 1985 |pages=429–453 |title=Thermosynthesis by biomembranes: Energy gain from cyclic temperature changes |journal=] |location=Amsterdam, the Netherlands |publisher=Elsevier |volume=115 |issue=3 |doi=10.1016/S0022-5193(85)80202-2 |issn=0022-5193 |pmid=3162066}}</ref><ref>{{cite journal |last=Muller |first=Anthonie W. J. |year=1995 |title=Were the first organisms heat engines? A new model for biogenesis and the early evolution of biological energy conversion |journal=Progress in Biophysics and Molecular Biology |location=Oxford, UK; New York |publisher=] |volume=63 |issue=2 |pages=193–231 |doi=10.1016/0079-6107(95)00004-7 |issn=0079-6107 |pmid=7542789}}</ref> | |||
The surfaces of mineral particles inside deep-ocean hydrothermal vents have catalytic properties similar to those of enzymes and can create simple organic molecules, such as ] (CH<sub>3</sub>OH) and ], ], and ]s out of the dissolved CO<sub>2</sub> in the water, if driven by an applied voltage or by reaction with H<sub>2</sub> or H<sub>2</sub>S.<ref name="organics">{{cite press release |last=Usher |first=Oli |date=27 April 2015 |title=Chemistry of seabed's hot vents could explain emergence of life |url=https://www.ucl.ac.uk/silva/mathematical-physical-sciences/maps-news-publication/maps1526 |publisher=] |access-date=19 June 2015 |archive-url=https://web.archive.org/web/20150620012231/https://www.ucl.ac.uk/silva/mathematical-physical-sciences/maps-news-publication/maps1526 |archive-date=20 June 2015 }}</ref><ref>{{cite journal |last1=Roldan |first1=Alberto |last2=Hollingsworth |first2=Nathan |last3=Roffey |first3=Anna |last4=Islam |first4=Husn-Ubayda |last5=Goodall |first5=Josephine B. M. |last6=Catlow |first6=C. Richard A. |author6-link=Richard Catlow |last7=Darr |first7=Jawwad A. |last8=Bras |first8=Wim |last9=Sankar |first9=Gopinathan |last10=Holt |first10=Katherine B. |last11=Hogarth |first11=Graeme |last12=de Leeuw |first12=Nora Henriette |display-authors=3 |date=May 2015 |title=Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions |url=http://pubs.rsc.org/en/content/articlepdf/2015/cc/c5cc02078f |journal=] |volume=51 |issue=35 |pages=7501–7504 |doi=10.1039/C5CC02078F |pmid=25835242 |access-date=2015-06-19 |url-status=live |archive-url=https://web.archive.org/web/20150620003943/http://pubs.rsc.org/en/content/articlepdf/2015/cc/c5cc02078f |archive-date=20 June 2015 |doi-access=free}}</ref> | |||
First, life needed an energy source to bring about the condensation reaction that yielded the peptide bonds of proteins and the ]s of RNA. In a generalization and thermal variation of the ] of today's ATP synthase, the "first protein" would have bound substrates (peptides, phosphate, nucleosides, RNA 'monomers') and condensed them to a reaction product that remained bound until after a temperature change it was released by thermal unfolding. | |||
Starting in 1985, researchers proposed that life arose at hydrothermal vents,<ref>{{cite journal |last1=Baross |first1=J. A. |last2=Hoffman |first2=S. E. |year= 1985 |title=Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life |journal=] |volume=15 |issue=4 |pages=327–345 |doi=10.1007/bf01808177 |bibcode=1985OrLi...15..327B |s2cid=4613918}}</ref><ref>{{cite journal |last1=Russell |first1=M. J. |last2= Hall |first2=A. J. |year=1997 |title=The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front |journal=] |volume=154 |issue=3 |pages=377–402 |doi=10.1144/gsjgs.154.3.0377 |pmid=11541234 |bibcode=1997JGSoc.154..377R |s2cid=24792282}}</ref> that spontaneous chemistry in the Earth's crust driven by rock–water interactions at disequilibrium thermodynamically underpinned life's origin<ref>{{cite journal |last1=Amend |first1=J. P. |last2= LaRowe |first2=D. E. |last3=McCollom |first3=T. M. |last4=Shock |first4=E. L. |year=2013 |title=The energetics of organic synthesis inside and outside the cell |journal= ] |volume=368 |issue=1622 |page=20120255 |doi=10.1098/rstb.2012.0255 |pmid=23754809 |pmc=3685458}}</ref><ref>{{cite journal |last1=Shock |first1=E. L. |last2=Boyd |first2=E. S. |year=2015 |title=Geomicrobiology and microbial geochemistry:principles of geobiochemistry |journal=] |volume=11 |pages=389–394 |doi=10.2113/gselements.11.6.395}}</ref> and that the founding lineages of the archaea and bacteria were H<sub>2</sub>-dependent autotrophs that used CO<sub>2</sub> as their terminal acceptor in energy metabolism.<ref>{{cite journal |last1=Martin |first1=W. |last2=Russell |first2= M. J. |year=2007 |title=On the origin of biochemistry at an alkaline hydrothermal vent |journal=] |volume=362 |issue= 1486 |pages=1887–1925 |doi=10.1098/rstb.2006.1881 |pmid=17255002 |pmc=2442388}}</ref> In 2016, Martin suggested, based upon this evidence, that the LUCA "may have depended heavily on the geothermal energy of the vent to survive".<ref name="Weiss Sousa Mrnjavac 2016" /> Pores at deep sea hydrothermal vents are suggested to have been occupied by membrane-bound compartments which promoted biochemical reactions.<ref>{{cite journal |last1=Lane |first1=Nick |last2=Martin |first2=William F. |date=2012-12-21 |title=The Origin of Membrane Bioenergetics |journal=Cell |volume=151 |issue=7 |pages=1406–1416 |doi= 10.1016/j.cell.2012.11.050 |pmid=23260134 |s2cid=15028935 |doi-access=free }}</ref><ref>{{cite journal |last1=Baaske |first1=Philipp |last2= Weinert |first2=Franz M. |last3=Duhr |first3=Stefan |last4=Lemke |first4=Kono H. |last5=Russell |first5=Michael J. |last6=Braun |first6=Dieter |date=2007-05-29 |title=Extreme accumulation of nucleotides in simulated hydrothermal pore systems |journal=Proceedings of the National Academy of Sciences |volume=104 |issue=22 |pages= 9346–9351 |doi=10.1073/pnas.0609592104 |pmc=1890497 |pmid=17494767 |doi-access=free|bibcode=2007PNAS..104.9346B }}</ref> Metabolic intermediates in the Krebs cycle, gluconeogenesis, amino acid bio-synthetic pathways, glycolysis, the pentose phosphate pathway, and including sugars like ribose, and lipid precursors can occur non-enzymatically at conditions relevant to deep-sea alkaline hydrothermal vents.<ref>{{Cite journal |last1=Nunes Palmeira |first1=Raquel |last2=Colnaghi |first2=Marco |last3=Harrison |first3=Stuart A. |last4=Pomiankowski |first4=Andrew |last5=Lane |first5=Nick |author5-link=Nick Lane |date=2022-11-09 |title=The limits of metabolic heredity in protocells |journal=Proceedings of the Royal Society B: Biological Sciences |volume=289 |issue=1986 |doi=10.1098/rspb.2022.1469 |pmc=9653231 |pmid=36350219}}</ref> | |||
The energy source under the thermosynthesis hypothesis was thermal cycling, the result of suspension of protocells in a ] current, as is plausible in a volcanic hot spring; the convection accounts for the self-organization and ] required in any origin of life model. The still ubiquitous role of thermal cycling in germination and cell division is considered a relic of primordial thermosynthesis. | |||
If the deep marine hydrothermal setting was the site for the origin of life, then abiogenesis could have happened as early as 4.0-4.2 Gya. If life evolved in the ocean at depths of more than ten meters, it would have been shielded both from impacts and the then high levels of ultraviolet radiation from the sun. The available energy in hydrothermal vents is maximized at 100–150 °C, the temperatures at which ] bacteria and ] ] live.<ref>{{Cite journal |last=Woese |first=Carl R. |date=1987 |title=Bacterial evolution |journal=Microbiological Reviews |volume=51.2 (1987) |issue=2 |pages=221–271 |doi=10.1128/mr.51.2.221-271.1987 |pmid=2439888 |pmc=373105 |s2cid=734579 }}</ref><ref>{{Citation |last1=Russell |first1=Michael J. |title=The onset and early evolution of life |date=2006 |work=Evolution of Early Earth's Atmosphere, Hydrosphere, and Biosphere - Constraints from Ore Deposits |publisher=Geological Society of America |last2=Hall |first2=Allan J. |doi=10.1130/2006.1198(01) |doi-broken-date=11 December 2024 |isbn=9780813711980 |url=https://pubs.geoscienceworld.org/gsa/books/book/442/chapter-abstract/3799005/The-onset-and-early-evolution-of-life?redirectedFrom=fulltext |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131155448/https://pubs.geoscienceworld.org/gsa/books/book/442/chapter-abstract/3799005/The-onset-and-early-evolution-of-life?redirectedFrom=fulltext |url-status=live }}</ref> Arguments against a hydrothermal origin of life state that hyperthermophily was a result of ] in bacteria and archaea, and that a ] environment would have been more likely.<ref>{{Cite journal |last1=Boussau |first1=Bastien |last2=Blanquart |first2=Samuel |last3=Necsulea |first3=Anamaria |last4=Lartillot |first4=Nicolas |last5=Gouy |first5=Manolo |date=December 2008 |title=Parallel adaptations to high temperatures in the Archaean eon |url=https://www.nature.com/articles/nature07393 |journal=Nature |volume=456 |issue=7224 |pages=942–945 |doi=10.1038/nature07393 |pmid=19037246 |bibcode=2008Natur.456..942B |s2cid=4348746 |access-date=8 December 2023 |archive-date=16 December 2023 |archive-url=https://web.archive.org/web/20231216095135/https://www.nature.com/articles/nature07393 |url-status=live }}</ref><ref name="science.org">{{Cite journal |last1=Galtier |first1=Nicolas |last2=Tourasse |first2=Nicolas |last3=Gouy |first3=Manolo |date=1999-01-08 |title=A Nonhyperthermophilic Common Ancestor to Extant Life Forms |url=https://www.science.org/doi/10.1126/science.283.5399.220 |journal=Science |volume=283 |issue=5399 |pages=220–221 |doi=10.1126/science.283.5399.220 |pmid=9880254 |access-date=8 December 2023 |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131155324/https://www.science.org/doi/10.1126/science.283.5399.220 |url-status=live }}</ref> This hypothesis, suggested in 1999 by Galtier, was proposed one year before the discovery of the Lost City Hydrothermal Field, where white-smoker hydrothermal vents average ~45-90 °C.<ref>{{Cite journal |last1=Kelley |first1=Deborah S. |last2=Karson |first2=Jeffrey A. |last3=Blackman |first3=Donna K. |last4=Früh-Green |first4=Gretchen L. |last5=Butterfield |first5=David A. |last6=Lilley |first6=Marvin D. |last7=Olson |first7=Eric J. |last8=Schrenk |first8=Matthew O. |last9=Roe |first9=Kevin K. |last10=Lebon |first10=Geoff T. |last11=Rivizzigno |first11=Pete |date=July 2001 |title=An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N |journal=Nature |volume=412 |issue=6843 |pages=145–149 |doi=10.1038/35084000 |pmid=11449263 |bibcode=2001Natur.412..145K |s2cid=4407013 |url=https://www.nature.com/articles/35084000 |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131155327/https://www.nature.com/articles/35084000 |url-status=live }}</ref> Moderate temperatures and alkaline seawater such as that at Lost City are now the favoured hydrothermal vent setting in contrast to acidic, high temperature (~350 °C) black-smokers. | |||
By ] cell membrane lipids, this "first protein" gave a selective advantage to the lipid protocell that contained the protein. This protein also synthesized a library of many proteins, of which only a minute fraction had thermosynthesis capabilities. As proposed by Dyson,<ref name="Dyson 1999" /> it propagated functionally: it made daughters with similar capabilities, but it did not copy itself. Functioning daughters consisted of different amino acid sequences. | |||
==== Arguments against a vent setting ==== | |||
Whereas the Iron–sulfur world identifies a circular pathway as the most simple, the thermosynthesis hypothesis does not even invoke a pathway: ] resembles a physical adsorption process that yields free energy,<ref>{{cite journal |last1=Muller |first1=Anthonie W. J. |last2=Schulze-Makuch |first2=Dirk |authorlink2=Dirk Schulze-Makuch |date=1 April 2006 |title=Sorption heat engines: Simple inanimate negative entropy generators |journal=] |location=Utrecht, the Netherlands |publisher=Elsevier |volume=362 |issue=2 |pages=369–381 |arxiv=physics/0507173 |bibcode=2006PhyA..362..369M |doi=10.1016/j.physa.2005.12.003 |issn=0378-4371}}</ref> rather than a regular enzyme's mechanism, which decreases the free energy. It has been claimed that the emergence of cyclic systems of protein catalysts is implausible.<ref>{{harvnb|Orgel|1987|pp=9–16}}</ref> | |||
Production of prebiotic organic compounds at hydrothermal vents is estimated to be 1x10<sup>8</sup> kg yr<sup>−1</sup>.<sup><ref name="Ehrenfreund Irvine Becker 2002">{{Cite journal |last1=Ehrenfreund |first1=P. |last2=Irvine |first2=W. |last3=Becker |first3=L. |last4=Blank |first4=J. |last5=Brucato |first5=J. R. |last6=Colangeli |first6=L. |last7=Derenne |first7=S. |last8=Despois |first8=D. |last9=Dutrey |first9=A. |last10=Fraaije |first10=H. |last11=Lazcano |first11=A. |last12=Owen |first12=T. |last13=Robert |first13=F. |display-authors=5 |date=August 2002 |title=Astrophysical and astrochemical insights into the origin of life |journal=Reports on Progress in Physics |volume=65 |issue=10 |pages=1427 |doi=10.1088/0034-4885/65/10/202 |bibcode=2002RPPh...65.1427E |s2cid=250904448}}</ref></sup> While a large amount of key prebiotic compounds, such as methane, are found at vents, they are in far lower concentrations than estimates of a Miller-Urey Experiment environment. In the case of methane, the production rate at vents is around 2-4 orders of magnitude lower than predicted amounts in a ] surface atmosphere.<ref name="Ehrenfreund Irvine Becker 2002"/><ref>{{cite book |last1=Chyba |first1=C.F. |chapter=Comets and Prebiotic Organic Molecules on Early Earth |title=Comets and the Origin and Evolution of Life |pages=169–206 |publisher=Springer Berlin Heidelberg |isbn=978-3-540-33086-8 |last2=Chyba |first2=C.F. |last3=Hand |first3=K.P. |series=Advances in Astrobiology and Biogeophysics |date=2006 |doi=10.1007/3-540-33088-7_6 |chapter-url=https://link.springer.com/chapter/10.1007/3-540-33088-7_6 |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131155457/https://link.springer.com/chapter/10.1007/3-540-33088-7_6 |url-status=live }}</ref> | |||
== Other models of abiogenesis == | |||
Other arguments against an oceanic vent setting for the origin of life include the inability to concentrate prebiotic materials due to strong dilution from seawater. This open-system cycles compounds through minerals that make up vents, leaving little residence time to accumulate.<ref>{{Citation |last=Chatterjee |first=Sankar |title=The Cradle of Life |date=2023 |work=From Stardust to First Cells: The Origin and Evolution of Early Life |pages=43–66 |editor-last=Chatterjee |editor-first=Sankar |place=Cham |publisher=Springer International Publishing |doi=10.1007/978-3-031-23397-5_6 |isbn=978-3-031-23397-5 |url=https://link.springer.com/chapter/10.1007/978-3-031-23397-5_6 |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131155449/https://link.springer.com/chapter/10.1007/978-3-031-23397-5_6 |url-status=live }}</ref> All modern cells rely on phosphates and potassium for nucleotide backbone and protein formation respectively, making it likely that the first life forms also shared these functions. These elements were not available in high quantities in the Archaean oceans as both primarily come from the weathering of continental rocks on land, far from vent settings. Submarine hydrothermal vents are not conducive to condensation reactions needed for polymerisation to form macromolecules.<ref>{{cite book |last=Deamer |first=David W. |chapter=Prospects for Life on Other Planets |date=2019-02-07 |title=Assembling Life |publisher=] |doi=10.1093/oso/9780190646387.003.0017 |isbn=978-0-19-064638-7 |url=https://academic.oup.com/book/40676/chapter-abstract/348367627?redirectedFrom=fulltext |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131155333/https://academic.oup.com/book/40676/chapter-abstract/348367627?redirectedFrom=fulltext |url-status=live }}</ref><ref>{{Cite journal |last1=Pearce |first1=Ben K. D. |last2=Pudritz |first2=Ralph E. |last3=Semenov |first3=Dmitry A. |last4=Henning |first4=Thomas K. |date=2017-10-02 |title=Origin of the RNA world: The fate of nucleobases in warm little ponds |journal=Proceedings of the National Academy of Sciences |volume=114 |issue=43 |pages=11327–11332 |doi=10.1073/pnas.1710339114 |pmid=28973920 |pmc=5664528 |bibcode=2017PNAS..11411327P |doi-access=free |arxiv=1710.00434 }}</ref> | |||
=== Clay hypothesis === | |||
], an abundant ], is a catalyst for the polymerization of RNA and for the formation of membranes from lipids.<ref>{{cite press release |last=Perry |first=Caroline |date=7 February 2011 |title=Clay-armored bubbles may have formed first protocells |url=http://www.eurekalert.org/pub_releases/2011-02/hu-cbm020411.php |location=Cambridge, MA |publisher=] |agency=EurekAlert! |accessdate=2015-06-20}}</ref> A model for the origin of life using clay was forwarded by ] in 1985 and explored as a plausible mechanism by several scientists.<ref>{{harvnb|Dawkins|1996|pp=148–161}}</ref> The clay hypothesis postulates that complex organic molecules arose gradually on a pre-existing, non-organic replication surfaces of silicate crystals in solution. | |||
An older argument was that key polymers were encapsulated in vesicles after condensation, which supposedly would not happen in saltwater because of the high concentrations of ions. However, while it is true that salinity inhibits vesicle formation from low-diversity mixtures of fatty acids,<ref name="Deamer 2021"/> vesicle formation from a broader, more realistic mix of fatty-acid and 1-alkanol species is more resilient.<ref name="Jordan 2019">{{cite journal|last1=Jordan|first1=Sean F.|last2=Rammu|first2=Hanadi|last3=Zheludev|first3=Ivan N.|last4=Hartley|first4=Andrew M.|last5=Maréchal|first5=Amandine|last6=Lane|first6=Nick|date=2019|title=Promotion of protocell self-assembly from mixed amphiphiles at the origin of life|url=https://www.nature.com/articles/s41559-019-1015-y|journal=Nature Ecology & Evolution|volume=3|issue=12|pages=1705–1714|doi=10.1038/s41559-019-1015-y|pmid=31686020 |bibcode=2019NatEE...3.1705J }}</ref><ref name="Deamer 2021"/> | |||
At the ], James P. Ferris' studies have also confirmed that clay minerals of ] catalyze the formation of RNA in aqueous solution, by joining nucleotides to form longer chains.<ref>{{cite journal |author1=Wenhua Huang |last2=Ferris |first2=James P. |date=12 July 2006 |title=One-Step, Regioselective Synthesis of up to 50-mers of RNA Oligomers by Montmorillonite Catalysis |journal=Journal of the American Chemical Society |location=Washington, D.C. |publisher=American Chemical Society |volume=128 |issue=27 |pages=8914–8919 |doi=10.1021/ja061782k |issn=0002-7863 |pmid=16819887}}</ref> | |||
=== Surface bodies of water === | |||
In 2007, Bart Kahr from the ] and colleagues reported their experiments that tested the idea that crystals can act as a source of transferable information, using crystals of ]. "Mother" crystals with imperfections were cleaved and used as seeds to grow "daughter" crystals from solution. They then examined the distribution of imperfections in the new crystals and found that the imperfections in the mother crystals were reproduced in the daughters, but the daughter crystals also had many additional imperfections. For gene-like behavior to be observed, the quantity of inheritance of these imperfections should have exceeded that of the mutations in the successive generations, but it did not. Thus Kahr concluded that the crystals "were not faithful enough to store and transfer information from one generation to the next."<ref>{{cite journal |last=Moore |first=Caroline |date=16 July 2007 |title=Crystals as genes? |url=http://www.rsc.org/Publishing/ChemScience/Volume/2007/08/Crystals_as_genes.asp |journal=Highlights in Chemical Science |location=London |publisher=Royal Society of Chemistry |issn=2041-5818 |accessdate=2015-06-21}} | |||
* {{cite journal |last1=Bullard |first1=Theresa |last2=Freudenthal |first2=John |last3=Avagyan |first3=Serine |last4=Kahr |first4=Bart |display-authors=3 |year=2007 |title=Test of Cairns-Smith's 'crystals-as-genes' hypothesis |journal=] |volume=136 |pages=231–245 |bibcode=2007FaDi..136..231B |doi=10.1039/b616612c |issn=1359-6640}}</ref> | |||
Surface bodies of water provide environments able to dry out and be rewetted. Continued wet-dry cycles allow the concentration of prebiotic compounds and ]s to polymerise macromolecules. Moreover, lake and ponds on land allow for detrital input from the weathering of continental rocks which contain ], the most common source of phosphates needed for nucleotide backbones. The amount of exposed continental crust in the Hadean is unknown, but models of early ocean depths and rates of ocean island and continental crust growth make it plausible that there was exposed land.<ref>{{Cite journal |last=Korenaga |first=Jun |date=November 2021 |title=Was There Land on the Early Earth? |journal=Life |volume=11 |issue=11 |pages=1142 |doi=10.3390/life11111142 |pmc=8623345 |pmid=34833018 |bibcode=2021Life...11.1142K |doi-access=free}}</ref> Another line of evidence for a surface start to life is the requirement for ] for organism function. UV is necessary for the formation of the U+C nucleotide ] by partial ] and nucleobase loss.<ref>{{Cite journal |last1=Powner |first1=Matthew W. |last2=Gerland |first2=Béatrice |last3=Sutherland |first3=John D. |date=May 2009 |title=Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions |url=https://www.nature.com/articles/nature08013 |journal=Nature |volume=459 |issue=7244 |pages=239–242 |doi=10.1038/nature08013 |pmid=19444213 |bibcode=2009Natur.459..239P |s2cid=4412117 |access-date=8 December 2023 |archive-date=12 November 2023 |archive-url=https://web.archive.org/web/20231112211237/https://www.nature.com/articles/nature08013 |url-status=live }}</ref> Simultaneously, UV can be harmful and sterilising to life, especially for simple early lifeforms with little ability to repair radiation damage. Radiation levels from a young Sun were likely greater, and, with no ], harmful shortwave UV rays would reach the surface of Earth. For life to begin, a shielded environment with influx from UV-exposed sources is necessary to both benefit and protect from UV. Shielding under ice, liquid water, mineral surfaces (e.g. clay) or regolith is possible in a range of surface water settings. While deep sea vents may have input from raining down of surface exposed materials, the likelihood of concentration is lessened by the ocean's open system.<ref>{{Cite journal |last1=Zahnle |first1=Kevin |last2=Arndt |first2=Nick |last3=Cockell |first3=Charles |last4=Halliday |first4=Alex |last5=Nisbet |first5=Euan |last6=Selsis |first6=Franck |last7=Sleep |first7=Norman H. |date=2007-03-01 |title=Emergence of a Habitable Planet |journal=Space Science Reviews |volume=129 |issue=1 |pages=35–78 |doi=10.1007/s11214-007-9225-z |bibcode=2007SSRv..129...35Z |s2cid=12006144 |url=https://link.springer.com/article/10.1007/s11214-007-9225-z |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131155452/https://link.springer.com/article/10.1007/s11214-007-9225-z |url-status=live }}</ref> | |||
=== Gold's "deep-hot biosphere" model === | |||
In the 1970s, ] proposed the theory that life first developed not on the surface of the Earth, but several kilometers below the surface. It is claimed that discovery of microbial life below the surface of another body in our Solar System would lend significant credence to this theory. Thomas Gold also asserted that a trickle of food from a deep, unreachable, source is needed for survival because life arising in a puddle of organic material is likely to consume all of its food and become extinct. Gold's theory is that the flow of such food is due to out-gassing of primordial methane from the Earth's mantle; more conventional explanations of the food supply of deep microbes (away from sedimentary carbon compounds) is that the organisms ] released by an interaction between water and (reduced) iron compounds in rocks. | |||
=== |
==== Hot springs ==== | ||
{{Main|Panspermia}} | |||
Panspermia is the ] that ] exists throughout the ], distributed by ], ], ],<ref name="cometary panspermia">{{cite journal| last=Wickramasinghe|first=Chandra| title=Bacterial morphologies supporting cometary panspermia: a reappraisal| journal=International Journal of Astrobiology| date=2011| volume=10| issue=1| pages=25–30 | doi=10.1017/S1473550410000157 |bibcode = 2011IJAsB..10...25W}}</ref><ref>{{cite journal|last=Napier|first=William|title=Exchange of Biomaterial Between Planetary Systems|date=October 2011 |volume=16| pages=6616–6642| url=http://journalofcosmology.com/JoC16pdfs/12_Napier.pdf}}</ref> ],<ref>Rampelotto, P. H. (2010). Panspermia: A promising field of research. In: Astrobiology Science Conference. Abs 5224.</ref> and, also, by ] in the form of unintended ] by ].<ref name="NAT-20140519">Forward planetary contamination like '']'', that has shown resistance to methods usually used in ]: {{cite journal |last=Madhusoodanan |first=Jyoti |title=Microbial stowaways to Mars identified |url=http://www.nature.com/news/microbial-stowaways-to-mars-identified-1.15249 |date=May 19, 2014 |journal=] |doi=10.1038/nature.2014.15249 |accessdate=May 23, 2014 }}</ref><ref name="NASA-20131106">{{cite news |url=http://www.jpl.nasa.gov/news/news.php?release=2013-319 |title=Rare New Microbe Found in Two Distant Clean Rooms |work=].gov |first=Guy |last=Webster |date=November 6, 2013 |accessdate=November 6, 2013}}</ref> | |||
Most branching phylogenies are thermophilic or hyperthermophilic, making it possible that the ] (LUCA) and preceding lifeforms were similarly thermophilic. Hot springs are formed from the heating of groundwater by geothermal activity. This intersection allows for influxes of material from deep penetrating waters and from surface runoff that transports eroded continental sediments. Interconnected groundwater systems create a mechanism for distribution of life to wider area.<ref>{{Cite journal |last=Woese |first=C R |date=June 1987 |title=Bacterial evolution |journal=Microbiological Reviews |volume=51 |issue=2 |pages=221–271 |doi=10.1128/mr.51.2.221-271.1987 |pmc=373105 |pmid=2439888}}</ref> | |||
Panspermia hypothesis does not attempt to explain how life first originated, but merely shifts it to another planet or a comet. The advantage of an extraterrestrial origin of primitive life is that life is not required to have formed on each planet it occurs on, but rather in a single location, and then spread about the ] to other star systems via cometary and/or meteorite impact. Evidence to support the hypothesis is scant, but it finds support in studies of ]s found in ] and in studies of ] microbes' survival in outer space tests.<ref>{{cite journal |last=Clark |first=Stuart |date=25 September 2002 |title=Tough Earth bug may be from Mars |url=http://www.newscientist.com/article/dn2844 |journal=New Scientist |location=London |publisher=Reed Business Information |issn=0262-4079 |accessdate=2015-06-21}}</ref><ref name="Gerda Horneck">{{cite journal |last1=Horneck |first1=Gerda |last2=Klaus |first2=David M. |last3=Mancinelli |first3=Rocco L. |date=March 2010 |title=Space Microbiology |journal=] |location=Washington, D.C. |publisher=American Society for Microbiology |volume=74 |issue=1 |pages=121–156 |doi=10.1128/MMBR.00016-09 |issn=1092-2172 |pmc=2832349 |pmid=20197502}}</ref><ref name="Rabbow">{{cite journal |last1=Rabbow |first1=Elke |last2=Horneck |first2=Gerda |last3=Rettberg |first3=Petra |last4=Schott |first4=Jobst-Ulrich |last5=Panitz |first5=Corinna |last6=L'Afflitto |first6=Andrea |last7=von Heise-Rotenburg |first7=Ralf |last8=Willnecker |first8=Reiner |last9=Baglioni |first9=Pietro |last10=Hatton |first10=Jason |last11=Dettmann |first11=Jan |last12=Demets |first12=René |last13=Reitz |first13=Günther |display-authors=3 |date=December 2009 |title=EXPOSE, an Astrobiological Exposure Facility on the International Space Station – from Proposal to Flight |journal=Origins of Life and Evolution of Biospheres |location=Dordrecht, the Netherlands |publisher=Springer |volume=39 |issue=6 |pages=581–598 |bibcode=2009OLEB...39..581R |doi=10.1007/s11084-009-9173-6 |issn=0169-6149 |pmid=19629743}}</ref><ref>{{cite journal |last1=Onofri |first1=Silvano |last2=de la Torre |first2=Rosa |last3=de Vera |first3=Jean-Pierre |last4=Ott |first4=Sieglinde |last5=Zucconi |first5=Laura |last6=Selbmann |first6=Laura |last7=Scalzi |first7=Giuliano |last8=Venkateswaran |first8=Kasthuri J. |last9=Rabbow |first9=Elke |last10=Sánchez Iñigo |first10=Francisco J. |last11=Horneck |first11=Gerda |display-authors=3 |date=May 2012 |title=Survival of Rock-Colonizing Organisms After 1.5 Years in Outer Space |journal=Astrobiology |location=New Rochelle, NY |publisher=Mary Ann Liebert, Inc. |volume=12 |issue=5 |pages=508–516 |bibcode=2012AsBio..12..508O |doi=10.1089/ast.2011.0736 |issn=1531-1074 |pmid=22680696}}</ref> (See also: ].) | |||
Mulkidjanian and co-authors argue that marine environments did not provide the ionic balance and composition universally found in cells, or the ions required by essential proteins and ribozymes, especially with respect to high K<sup>+</sup>/Na<sup>+</sup> ratio, Mn<sup>2+</sup>, Zn<sup>2+</sup> and phosphate concentrations. They argue that the only environments that mimic the needed conditions on Earth are hot springs similar to ones at Kamchatka.<ref name="Mulkidjanian Bychkov 2012">{{cite journal |last1=Mulkidjanian |first1=Armen Y. |last2=Bychkov |first2=Andrew Yu. |last3=Dibrova |first3=Daria V. |last4=Galperin |first4=Michael Y. |last5=Koonin |first5=Eugene V. |date=2012-04-03 |title=Origin of first cells at terrestrial, anoxic geothermal fields |journal=Proceedings of the National Academy of Sciences |volume=109 |issue=14 |pages=E821-30 |doi=10.1073/pnas.1117774109 |pmc=3325685 |pmid=22331915 |bibcode=2012PNAS..109E.821M |doi-access=free}}</ref> Mineral deposits in these environments under an anoxic atmosphere would have suitable pH (while current pools in an oxygenated atmosphere would not), contain precipitates of photocatalytic sulfide minerals that absorb harmful ultraviolet radiation, have wet-dry cycles that concentrate substrate solutions to concentrations amenable to spontaneous formation of biopolymers<ref>{{cite journal |last1=Chandru |first1=Kuhan |last2=Guttenberg |first2=Nicholas |last3=Giri |first3=Chaitanya |last4=Hongo |first4=Yayoi |last5=Butch |first5=Christopher |last6=Mamajanov |first6=Irena |last7=Cleaves |first7=H. James |display-authors=3 |title=Simple prebiotic synthesis of high diversity dynamic combinatorial polyester libraries |journal=] |date=31 May 2018 |volume=1 |issue=1 |page=30 |doi=10.1038/s42004-018-0031-1 |doi-access=free|bibcode=2018CmChe...1...30C }}</ref><ref>{{cite journal |last1=Forsythe |first1=Jay G. |last2=Yu |first2=Sheng-Sheng |last3=Mamajanov |first3=Irena |last4=Grover |first4=Martha A |author-link4=Martha Grover |last5=Krishnamurthy |first5=Ramanarayanan |last6=Fernández |first6=Facundo M. |last7=Hud |first7=Nicholas V. |display-authors=3 |date=17 August 2015 |title=Ester-Mediated Amide Bond Formation Driven by Wet–Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth |journal=Angewandte Chemie International Edition in English |volume=54 |issue=34 |pages=9871–9875 |doi=10.1002/anie.201503792 |pmc=4678426 |pmid=26201989|bibcode=2015AngCh..54.9871F }}</ref> created both by chemical reactions in the hydrothermal environment, and by exposure to ] during transport from vents to adjacent pools that would promote the formation of biomolecules.<ref>{{cite journal |last1=Patel |first1=Bhavesh H. |last2=Percivalle |first2=Claudia |last3=Ritson |first3=Dougal J. |last4=Duffy |first4=Colm. D. |last5=Sutherland |first5=John D. |date=March 16, 2015 |title=Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism |journal=Nature Chemistry |volume=7 |issue=4 |pages=301–307 |doi=10.1038/nchem.2202 |pmc=4568310 |pmid=25803468 |bibcode=2015NatCh...7..301P}}</ref> The hypothesized pre-biotic environments are similar to hydrothermal vents, with additional components that help explain peculiarities of the LUCA.<ref name="Mulkidjanian Bychkov 2012"/><ref name="Damer 2020"/> | |||
=== Extraterrestrial organic molecules === | |||
{{See also|List of interstellar and circumstellar molecules|Panspermia#Pseudo-panspermia}} | |||
] is one of the simplest organic compounds]] | |||
An organic compound is any member of a large class of gaseous, liquid, or solid chemicals whose molecules contain carbon. Carbon is the ] after hydrogen, ], and oxygen.<ref>{{cite encyclopedia |encyclopedia=Encyclopedia of Science |title=biological abundance of elements |url=http://www.daviddarling.info/encyclopedia/E/elbio.html |publisher=David Darling Enterprises |location=Dundee, Scotland |accessdate=2008-10-09}}</ref> Carbon is abundant in the Sun, stars, comets, and in the ] of most planets.<ref name="NASA-20140221">{{cite web |url=http://www.nasa.gov/ames/need-to-track-organic-nano-particles-across-the-universe-nasas-got-an-app-for-that/ |title=Need to Track Organic Nano-Particles Across the Universe? NASA's Got an App for That |last=Hoover |first=Rachel |date=21 February 2014 |website=] |publisher=NASA |location=Mountain View, CA |accessdate=2015-06-22}}</ref> Organic compounds are relatively common in space, formed by "factories of complex molecular synthesis" which occur in ]s and ]s, and chemically evolve after reactions are initiated mostly by ].<ref name="Ehrenfreund2010">{{cite journal |last1=Ehrenfreund |first1=Pascale |last2=Cami |first2=Jan |date=December 2010 |title=Cosmic carbon chemistry: from the interstellar medium to the early Earth. |journal=Cold Spring Harbor Perspectives in Biology |location=Cold Spring Harbor, NY |publisher=Cold Spring Harbor Laboratory Press |volume=2 |issue=12 |page=a002097 |doi=10.1101/cshperspect.a002097 |issn=1943-0264 |pmc=2982172 |pmid=20554702}}</ref><ref name="FromADistantComet">{{cite news |last=Chang |first=Kenneth |date=18 August 2009 |title=From a Distant Comet, a Clue to Life |url=http://www.nytimes.com/2009/08/19/science/space/19comet.html |newspaper=The New York Times |location=New York |publisher=The New York Times Company |page=A18 |issn=0362-4331 |accessdate=2015-06-22}}</ref><ref>{{cite journal |last1=Goncharuk |first1=Vladislav V. |last2=Zui |first2=O. V. |date=February 2015 |title=Water and carbon dioxide as the main precursors of organic matter on Earth and in space |journal=Journal of Water Chemistry and Technology |location=Dordrecht, the Netherlands |publisher=Springer on behalf of Allerton Press |volume=37 |issue=1 |pages=2–3 |doi=10.3103/S1063455X15010026 |issn=1063-455X}}</ref><ref>{{cite journal |last1=Abou Mrad |first1=Ninette |last2=Vinogradoff |first2=Vassilissa |last3=Duvernay |first3=Fabrice |last4=Danger |first4=Grégoire |last5=Theulé |first5=Patrice |last6=Borget |first6=Fabien |last7=Chiavassa |first7=Thierry |display-authors=3 |year=2015 |title=Laboratory experimental simulations: Chemical evolution of the organic matter from interstellar and cometary ice analogs |url=http://popups.ulg.ac.be/0037-9565/index.php?id=4621&file=1 |format=PDF |journal=Bulletin de la Société Royale des Sciences de Liège |location=Liège, Belgium |publisher=Société royale des sciences de Liège |volume=84 |pages=21–32 |bibcode=2015BSRSL..84...21A |issn=0037-9565 |accessdate=2015-04-06}}</ref> Based on ], the complex organic molecules necessary for life may have formed on dust grains in the protoplanetary disk surrounding the Sun before the formation of the Earth.<ref name="Space-20120329" /> According to the computer studies, this same process may also occur around other stars that acquire planets.<ref name="Space-20120329" /> | |||
A phylogenomic and geochemical analysis of proteins plausibly traced to the LUCA shows that the ionic composition of its intracellular fluid is identical to that of hot springs. The LUCA likely was dependent upon synthesized organic matter for its growth.<ref name="Mulkidjanian Bychkov 2012"/> Experiments show that RNA-like polymers can be synthesized in wet-dry cycling and UV light exposure. These polymers were encapsulated in vesicles after condensation.<ref name="Deamer 2021">{{cite journal |last=Deamer |first=David |author-link=David W. Deamer |date=10 February 2021 |title=Where Did Life Begin? Testing Ideas in Prebiotic Analogue Conditions |journal=] |volume=11 |issue=2 |page=134 |doi=10.3390/life11020134 |pmid=33578711 |pmc=7916457 |bibcode=2021Life...11..134D |doi-access=free}}</ref> Potential sources of organics at hot springs might have been transport by interplanetary dust particles, extraterrestrial projectiles, or atmospheric or geochemical synthesis. Hot springs could have been abundant in volcanic landmasses during the Hadean.<ref name="Damer 2020"/> | |||
Observations suggest that the majority of organic compounds introduced on Earth by interstellar dust particles are considered principal agents in the formation of complex molecules, thanks to their peculiar ] activities.<ref name="Lincei">{{cite journal |last=Gallori |first=Enzo |title=Astrochemistry and the origin of genetic material |journal=Rendiconti Lincei |location=Milan, Italy |publisher=Springer |date=June 2011 |volume=22 |issue=2 |pages=113–118 |doi=10.1007/s12210-011-0118-4 |issn=2037-4631}} "Paper presented at the Symposium 'Astrochemistry: molecules in space and time' (Rome, 4–5 November 2010), sponsored by Fondazione 'Guido Donegani', Accademia Nazionale dei Lincei."</ref><ref>{{cite journal |last=Martins |first=Zita |authorlink=Zita Martins |date=February 2011 |title=Organic Chemistry of Carbonaceous Meteorites |journal=] |location=Chantilly, VA |publisher=] et al. |volume=7 |issue=1 |pages=35–40 |doi=10.2113/gselements.7.1.35 |issn=1811-5209}}</ref> Studies reported in 2008, based on <sup>12</sup>C/<sup>13</sup>C ] of organic compounds found in the Murchison meteorite, suggested that the RNA component uracil and related molecules, including ], were formed extraterrestrially.<ref name="Murch_base">{{cite journal |last1=Martins |first1=Zita |last2=Botta |first2=Oliver |last3=Fogel |first3=Marilyn L. |last4=Sephton |first4=Mark A. |last5=Glavin |first5=Daniel P. |last6=Watson |first6=Jonathan S. |last7=Dworkin |first7=Jason P. |last8=Schwartz |first8=Alan W. |last9=Ehrenfreund |first9=Pascale |display-authors=3 |date=15 June 2008 |title=Extraterrestrial nucleobases in the Murchison meteorite |journal=Earth and Planetary Science Letters |location=Amsterdam, the Netherlands |publisher=Elsevier |volume=270 |issue=1–2 |pages=130–136 |bibcode=2008E&PSL.270..130M |arxiv=0806.2286 |doi=10.1016/j.epsl.2008.03.026 |issn=0012-821X}}</ref><ref>{{cite news |author=<!--Staff writer(s); no by-line.--> |date=14 June 2008 |title=We may all be space aliens: study |url=http://www.abc.net.au/news/2008-06-14/we-may-all-be-space-aliens-study/2471434 |work=] |location=Sydney |publisher=] |agency=] |accessdate=2015-06-22}}</ref> On 8 August 2011, a report based on ] studies of meteorites found on Earth was published suggesting DNA components (adenine, guanine and related organic molecules) were made in outer space.<ref name="Lincei" /><ref name="Callahan">{{cite journal |last1=Callahan |first1=Michael P. |last2=Smith |first2=Karen E. |last3=Cleaves |first3=H. James, II |last4=Ruzica |first4=Josef |last5=Stern |first5=Jennifer C. |last6=Glavin |first6=Daniel P. |last7=House |first7=Christopher H. |last8=Dworkin |first8=Jason P. |display-authors=3 |date=23 August 2011 |title=Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases |journal=Proc. Natl. Acad. Sci. U.S.A. |location=Washington, D.C. |publisher=National Academy of Sciences |volume=108 |issue=34 |pages=13995–13998 |bibcode=2011PNAS..10813995C |doi=10.1073/pnas.1106493108 |issn=0027-8424 |pmc=3161613 |pmid=21836052}}</ref><ref name="Steigerwald">{{cite web |url=http://www.nasa.gov/topics/solarsystem/features/dna-meteorites.html |title=NASA Researchers: DNA Building Blocks Can Be Made in Space |last=Steigerwald |first=John |date=8 August 2011 |work=] |publisher=NASA |location=Greenbelt, MD |accessdate=2015-06-23}}</ref> Scientists also found that the ] permeating the Universe contains complex organics ("amorphous organic solids with a mixed ]–] structure") that could be created naturally, and rapidly, by stars.<ref name="Space-20111026">{{cite news |last=Chow |first=Denise |date=26 October 2011 |title=Discovery: Cosmic Dust Contains Organic Matter from Stars |url=http://www.space.com/13401-cosmic-star-dust-complex-organic-compounds.html |work=Space.com |location=Ogden, UT |publisher=Purch |accessdate=2015-06-23}}</ref><ref name="ScienceDaily-20111026">{{cite news |author=<!--Staff writer(s); no by-line.--> |date=26 October 2011 |title=Astronomers Discover Complex Organic Matter Exists Throughout the Universe |url=http://www.sciencedaily.com/releases/2011/10/111026143721.htm |location=Rockville, MD |publisher=ScienceDaily, LLC |accessdate=2015-06-23}} Post is reprinted from materials provided by ].</ref><ref name="Nature-20111026">{{cite journal |author1=Sun Kwok |authorlink1=Sun Kwok |author2=Yong Zhang |date=3 November 2011 |title=Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features |journal=Nature |location=London |publisher=Nature Publishing Group |volume=479 |issue=7371 |pages=80–83 |bibcode=2011Natur.479...80K |doi=10.1038/nature10542 |issn=0028-0836 |pmid=22031328}}</ref> ] of ] suggested that these compounds may have been related to the development of life on Earth said that "If this is the case, life on Earth may have had an easier time getting started as these organics can serve as basic ingredients for life."<ref name="Space-20111026" /> | |||
==== Temperate surface bodies of water ==== | |||
] in ]]] | |||
Glycolaldehyde, the first example of an interstellar sugar molecule, was detected in the star-forming region near the center of our galaxy. It was discovered in 2000 by Jes Jørgensen and Jan M. Hollis.<ref name=Hollis>{{cite web |url=http://www.nasa.gov/vision/universe/starsgalaxies/interstellar_sugar.html |title=Space Sugar's a Sweet Find |first1=Lara |last1=Clemence |last2=Cohen |first2=Jarrett |date=7 February 2005 |work=Goddard Space Flight Center |publisher=NASA |location=Greenbelt, MD |accessdate=2015-06-23}}</ref> In 2012, Jørgensen's team reported the detection of glycolaldehyde in a distant star system. The molecule was found around the ] binary ] 400 ] from Earth.<ref name="NG-20120829">{{cite news |last=Than |first=Ker |date=30 August 2012 |title=Sugar Found In Space: A Sign of Life? |url=http://news.nationalgeographic.com/news/2012/08/120829-sugar-space-planets-science-life/ |work=National Geographic News |location=Washington, D.C. |publisher=] |accessdate=2015-06-23}}</ref><ref name="AP-20120829">{{cite news |author=<!--Staff writer(s); no by-line.--> |date=29 August 2012 |title=Sweet! Astronomers spot sugar molecule near star |url=http://apnews.excite.com/article/20120829/DA0V31D80.html |work=] |location=Yonkers, NY |publisher=] |agency=] |accessdate=2015-06-23}}</ref><ref>{{cite web |url=http://www.news.leiden.edu/news-2012/building-blocks-for-life-found-on-young-star.html |title=Building blocks of life found around young star |author=<!--Staff writer(s); no by-line.--> |date=30 September 2012 |website=News & Events |publisher=] |location=Leiden, the Netherlands |accessdate=2013-12-11}}</ref> Glycolaldehyde is needed to form RNA, which is similar in function to DNA. These findings suggest that complex organic molecules may form in stellar systems prior to the formation of planets, eventually arriving on young planets early in their formation.<ref>{{cite journal |last1=Jørgensen |first1=Jes K. |last2=Favre |first2=Cécile |last3=Bisschop |first3=Suzanne E. |last4=Bourke |first4=Tyler L. |last5=van Dishoeck |first5=Ewine F. |authorlink5=Ewine van Dishoeck |last6=Schmalzl |first6=Markus |display-authors=3 |date=20 September 2012 |title=Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA |url=http://www.eso.org/public/archives/releases/sciencepapers/eso1234/eso1234a.pdf |format=PDF |journal=] Letters |location=Bristol, England |publisher=] for the ] |volume=757 |issue=1 |arxiv=1208.5498 |bibcode=2012ApJ...757L...4J |doi=10.1088/2041-8205/757/1/L4 |issn=2041-8213 |id=L4 |accessdate=2015-06-23 |pages=L4}}</ref> Because sugars are associated with both metabolism and the ], two of the most basic aspects of life, it is thought the discovery of extraterrestrial sugar increases the likelihood that life may exist elsewhere in our galaxy.<ref name="Hollis" /> | |||
A ] start in surface bodies of waters hypothesis has evolved from Darwin's concept of a ']' and the ]. Freshwater bodies under temperate climates can accumulate prebiotic materials while providing suitable environmental conditions conducive to simple life forms. The climate during the Archaean is still a highly debated topic, as there is uncertainty about what continents, oceans, and the atmosphere looked like then. Atmospheric reconstructions of the Archaean from geochemical proxies and models state that sufficient greenhouse gases were present to maintain surface temperatures between 0-40 °C. Under this assumption, there is a greater abundance of moderate temperature niches in which life could begin.<ref>{{Cite journal |last1=Catling |first1=David C. |last2=Zahnle |first2=Kevin J. |date=2020-02-28 |title=The Archean atmosphere |journal=Science Advances |volume=6 |issue=9 |pages=eaax1420 |doi=10.1126/sciadv.aax1420 |pmc=7043912 |pmid=32133393|bibcode=2020SciA....6.1420C }}</ref> | |||
NASA announced in 2009 that scientists had identified another fundamental chemical building block of life in a comet for the first time, glycine, an amino acid, which was detected in material ejected from comet ] in 2004 and grabbed by NASA's ] probe. Glycine has been detected in meteorites before. Carl Pilcher, who leads the ] commented that "The discovery of glycine in a comet supports the idea that the fundamental building blocks of life are prevalent in space, and strengthens the argument that life in the Universe may be common rather than rare."<ref>{{cite news |author=<!--Staff writer(s); no by-line.--> |date=18 August 2009 |title='Life chemical' detected in comet |url=http://news.bbc.co.uk/2/hi/science/nature/8208307.stm |work=BBC News |location=London |publisher=BBC |accessdate=2015-06-23}}</ref> Comets are encrusted with outer layers of dark material, thought to be a ]-like substance composed of complex organic material formed from simple carbon compounds after reactions initiated mostly by ionizing radiation. It is possible that a rain of material from comets could have brought significant quantities of such complex organic molecules to Earth.<ref>{{cite journal |last1=Thompson |first1=William Reid |last2=Murray |first2=B. G. |last3=Khare |first3=Bishun Narain |authorlink3=Bishun Khare |last4=Sagan |first4=Carl |date=30 December 1987 |title=Coloration and darkening of methane clathrate and other ices by charged particle irradiation: Applications to the outer solar system |journal=] |location=Washington, D.C. |publisher=] |volume=92 |issue=A13 |pages=14933–14947 |bibcode=1987JGR....9214933T |doi=10.1029/JA092iA13p14933 |issn=0148-0227 |pmid=11542127}}</ref><ref>{{cite web |url=https://www.llnl.gov/news/life-earth-shockingly-comes-out-world |title=Life on Earth shockingly comes from out of this world |last=Stark |first=Anne M. |date=5 June 2013 |publisher=] |location=Livermore, CA |accessdate=2015-06-23}}</ref><ref>{{cite journal |last1=Goldman |first1=Nir |last2=Tamblyn |first2=Isaac |date=20 June 2013 |title=Prebiotic Chemistry within a Simple Impacting Icy Mixture |journal=] |location=Washington, D.C. |publisher=American Chemical Society |volume=117 |issue=24 |pages=5124–5131 |doi=10.1021/jp402976n |issn=1089-5639 |pmid=23639050}}</ref> Amino acids which were formed extraterrestrially may also have arrived on Earth via comets.<ref name="Follmann2009" /> It is estimated that during the Late Heavy Bombardment, meteorites may have delivered up to five million ]s of organic prebiotic elements to Earth per year.<ref name="Follmann2009" /> | |||
Strong lines of evidence for mesophily from biomolecular studies include Galtier's ] nucleotide thermometer. G+C are more abundant in thermophiles due to the added stability of an additional hydrogen bond not present between A+T nucleotides. ] sequencing on a diverse range of modern lifeforms show that ]'s reconstructed G+C content was likely representative of moderate temperatures.<ref name="science.org"/> | |||
]s. Clockwise from top left: ], ] and ].]] | |||
]s (PAH) are the most common and abundant of the known polyatomic molecules in the ], and are considered a likely constituent of the ].<ref name="SP-20051018" /><ref name="AJ-20051010" /><ref name="NASA-20110413" /> In 2010, PAHs, along with ]s (or "]"), have been detected in ]e.<ref name="AJL-20101120">{{cite journal |last1=García-Hernández |first1=Domingo. A. |last2=Manchado |first2=Arturo |last3=García-Lario |first3=Pedro |last4=Stanghellini |first4=Letizia |last5=Villaver |first5=Eva |last6=Shaw |first6=Richard A. |last7=Szczerba |first7=Ryszard |last8=Perea-Calderón |first8=Jose Vicente |display-authors=3 |date=20 November 2010 |title=Formation of Fullerenes in H-Containing Planetary Nebulae |journal=The Astrophysical Journal Letters |location=Bristol, England |publisher=IOP Publishing for the American Astronomical Society |volume=724 |issue=1 |pages=L39–L43 |arxiv=1009.4357 |bibcode=2010ApJ...724L..39G |doi=10.1088/2041-8205/724/1/L39 |issn=2041-8213}}</ref><ref>{{cite news |last=Atkinson |first=Nancy |date=27 October 2010 |title=Buckyballs Could Be Plentiful in the Universe |url=http://www.universetoday.com/76732/buckyballs-could-be-plentiful-in-the-universe/ |work=] |location=Courtenay, British Columbia |publisher=Fraser Cain |accessdate=2015-06-24}}</ref> | |||
Although most modern phylogenies are thermophilic or hyperthermophilic<!--REPETITION-->, it is possible that their widespread diversity today is a product of convergent evolution and horizontal gene transfer rather than an inherited trait from LUCA.<ref>{{Cite journal |last1=Miller |first1=Stanley L. |last2=Lazcano |first2=Antonio |date=December 1995 |title=The origin of life?did it occur at high temperatures? |journal=Journal of Molecular Evolution |volume=41 |issue=6 |pages=689–692 |doi=10.1007/bf00173146 |pmid=11539558 |bibcode=1995JMolE..41..689M |s2cid=25141419 |hdl=2060/19980211388 |url=https://link.springer.com/article/10.1007/BF00173146 |hdl-access=free |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131155843/https://link.springer.com/article/10.1007/BF00173146 |url-status=live }}</ref> The ] ] is found exclusively in thermophiles and hyperthermophiles as it allows for coiling of DNA.<ref>{{Cite journal |last1=Forterre |first1=Patrick |last2=Bergerat |first2=Agnes |last3=Lopex-Garcia |first3=Purificacion |date=May 1996 |title=The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea |journal=FEMS Microbiology Reviews |volume=18 |issue=2–3 |pages=237–248 |doi=10.1111/j.1574-6976.1996.tb00240.x |pmid=8639331 |s2cid=6001830|doi-access=free }}</ref> The reverse gyrase enzyme requires ] to function, both of which are complex biomolecules. If an origin of life is hypothesised to involve a simple organism that had not yet evolved a membrane, let alone ATP, this would make the existence of reverse gyrase improbable. Moreover, phylogenetic studies show that reverse gyrase had an archaeal origin, and that it was transferred to bacteria by horizontal gene transfer. This implies that reverse gyrase was not present in the LUCA.<ref>{{Cite journal |last1=Brochier-Armanet |first1=Céline |last2=Forterre |first2=Patrick |date=May 2006 |title=Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers |journal=Archaea |volume=2 |issue=2 |pages=83–93 |doi=10.1155/2006/582916 |pmid=17350929 |pmc=2686386 |doi-access=free}}</ref> | |||
<!--This section is the for topic in general, so the following timeline of specific molecule discovery seems out of place: | |||
On 3 April 2013, NASA reported that complex organic chemicals could arise on ], a moon of ], based on studies simulating the ] of Titan.<ref name="PhysOrg-20130403">{{cite news |date=3 April 2013 |title=NASA team investigates complex chemistry at Titan |url=http://phys.org/news/2013-04-nasa-team-complex-chemistry-titan.html |work=] |publisher=Omicron Technology Limited |accessdate=2015-06-24}}</ref> | |||
==== Icy surface bodies of water ==== | |||
On 24 January 2014, NASA reported that ] on the planet Mars by the ] and ] ] will now search for evidence of ancient life, including a biosphere based on ]ic, ]ic and/or ] microorganisms, as well as ancient water, including ] (]s related to ancient ]s or ]s) that may have been ].<ref name="SCI-20140124a">{{cite journal |last=Grotzinger |first=John P. |authorlink=John P. Grotzinger |date=24 January 2014 |title=Habitability, Taphonomy, and the Search for Organic Carbon on Mars |journal=Science |location=Washington, D.C. |publisher=American Association for the Advancement of Science |volume=343 |number=6169 |pages=386–387 |bibcode=2014Sci...343..386G |doi=10.1126/science.1249944 |issn=0036-8075 |pmid=24458635}} Special issue: Introduction. | |||
* {{cite journal |date=24 January 2014 |title=Exploring Martian Habitability |url=http://www.sciencemag.org/content/343/6169.toc#SpecialIssue |journal=Science |location=Washington, D.C. |publisher=American Association for the Advancement of Science |volume=343 |number=6169 |pages=345–452 |issn=0036-8075}} Special issue: Introduction and seven research articles.</ref><ref name="SCI-20140124">{{cite journal |title=Special Collection: Curiosity |url=http://www.sciencemag.org/site/extra/curiosity/ |journal=Science |location=Washington, D.C. |publisher=American Association for the Advancement of Science |issn=0036-8075}}</ref><ref name="SCI-20140124c">{{cite journal |last1=Grotzinger |first1=John P. |last2=Sumner |first2=Dawn Y. |last3=Kah |first3=Linda C. |display-authors=etal |date=24 January 2014 |title=A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars |journal=Science |location=Washington, D.C. |publisher=American Association for the Advancement of Science |volume=343 |number=6169 |page=1242777 |bibcode=2014Sci...343A.386G |doi=10.1126/science.1242777 |issn=0036-8075 |pmid=24324272}}</ref> The search for evidence of ], ] (related to fossils), and ] on the planet Mars is now a primary NASA objective.<ref name="SCI-20140124a" /> Nitrogen, which was not attributed to biological organisms, was found on Mars, indicating a possible abiotic ].<ref>{{cite news |date=25 March 2015 |title=Did Mars once have a nitrogen cycle? Scientists find fixed nitrogen in Martian sediments |url=http://www.sciencedaily.com/releases/2015/03/150325082341.htm |work=Science Daily |location=Rockville, MD |publisher=ScienceDaily, LLC |accessdate=2015-06-26}} Post is reprinted from materials provided by ]. | |||
* {{cite journal |last1=Stern |first1=Jennifer C. |last2=Sutter |first2=Brad |last3=Freissinet |first3=Caroline |last4=Navarro-González |first4=Rafael |last5=McKay |first5=Christopher P. |last6=Archer |first6=P. Douglas, Jr. |last7=Buch |first7=Arnaud |last8=Brunner |first8=Anna E. |last9=Coll |first9=Patrice |last10=Eigenbrode |first10=Jennifer L. |last11=Fairen |first11=Alberto G. |last12=Franz |first12=Heather B. |last13=Glavin |first13=Daniel P. |last14=Kashyap |first14=Srishti |last15=McAdam |first15=Amy C. |last16=Ming |first16=Douglas W. |last17=Steele |first17=Andrew |last18=Szopa |first18=Cyril |last19=Wray |first19=James J. |last20=Martín-Torres |first20=F. Javier |last21=Zorzano |first21=Maria-Paz |last22=Conrad |first22=Pamela G. |last23=Mahaffy |first23=Paul R. |author24=MSL Science Team |display-authors=3 |date=7 April 2015 |title=Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the ''Curiosity'' rover investigations at Gale crater, Mars |journal=Proc. Natl. Acad. Sci. U.S.A. |location=Washington, D.C. |publisher=National Academy of Sciences |volume=112 |issue=14 |pages=4245–4250 |bibcode=2015PNAS..112.4245S |doi=10.1073/pnas.1420932112 |issn=0027-8424 |pmc=4394254 |pmid=25831544}}</ref> | |||
--> | |||
In March 2015, NASA scientists reported that, for the first time, complex DNA and RNA organic compounds of life, including uracil, cytosine and ], have been formed in the laboratory under outer space conditions, using starting chemicals, such as pyrimidine, found in meteorites. Pyrimidine, like PAHs, the most carbon-rich chemical found in the Universe, may have been formed in ] stars or in interstellar dust and gas clouds.<ref name="NASA-20150303">{{cite web |url=http://www.nasa.gov/content/nasa-ames-reproduces-the-building-blocks-of-life-in-laboratory |title=NASA Ames Reproduces the Building Blocks of Life in Laboratory |editor-last=Marlaire |editor-first=Ruth |date=3 March 2015 |work=Ames Research Center |publisher=NASA |location=Moffett Field, CA |accessdate=2015-03-05}}</ref> | |||
Cold-start origin of life theories stem from the idea there may have been cold enough regions on the early Earth that large ice cover could be found. Stellar evolution models predict that the Sun's luminosity was ~25% weaker than it is today. Fuelner states that although this significant decrease in solar energy would have formed an icy planet, there is strong evidence for liquid water to be present, possibly driven by a greenhouse effect. This would create an early Earth with both liquid oceans and icy poles.<ref>{{Cite journal |last=Feulner |first=Georg |date=June 2012 |title=The faint young Sun problem |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2011RG000375 |journal=Reviews of Geophysics |volume=50 |issue=2 |doi=10.1029/2011RG000375 |arxiv=1204.4449 |bibcode=2012RvGeo..50.2006F |s2cid=119248267 |access-date=8 December 2023 |archive-date=8 December 2023 |archive-url=https://web.archive.org/web/20231208060325/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2011RG000375 |url-status=live }}</ref> | |||
=== Lipid world === | |||
{{Main|Gard model}} | |||
The ] theory postulates that the first self-replicating object was lipid-like.<ref>{{cite web |url=http://www.weizmann.ac.il/molgen/Lancet/research/prebiotic-evolution |title=Systems Prebiology-Studies of the origin of Life |last=Lancet |first=Doron |date=30 December 2014 |website=The Lancet Lab |publisher=Department of Molecular Genetics; ] |location=Rehovot, Israel |accessdate=2015-06-26}}</ref><ref>{{cite journal |last=Segré |first=Daniel |last2=Ben-Eli |first2=Dafna |last3=Deamer |first3=David W. |last4=Lancet |first4=Doron |date=February 2001 |title=The Lipid World |url=http://www.weizmann.ac.il/molgen/Lancet/sites/molgen.Lancet/files/uploads/segre_lipid_world.pdf |format=PDF |journal=Origins of Life and Evolution of the Biosphere |publisher=Kluwer Academic Publishers |volume=31 |issue=1–2 |pages=119–145 |doi=10.1023/A:1006746807104 |issn=0169-6149 |pmid=11296516 |accessdate=2008-09-11}}</ref> It is known that phospholipids form ]s in water while under agitation—the same structure as in cell membranes. These molecules were not present on early Earth, but other ] long-chain molecules also form membranes. Furthermore, these bodies may expand (by insertion of additional lipids), and under excessive expansion may undergo spontaneous splitting which preserves the same size and composition of lipids in the two ]. The main idea in this theory is that the molecular composition of the lipid bodies is the preliminary way for information storage, and evolution led to the appearance of polymer entities such as RNA or DNA that may store information favorably. Studies on vesicles from potentially prebiotic amphiphiles have so far been limited to systems containing one or two types of amphiphiles. This in contrast to the output of simulated prebiotic chemical reactions, which typically produce very heterogeneous mixtures of compounds.<ref name="Chen 2010" /> | |||
Within the hypothesis of a lipid bilayer membrane composed of a mixture of various distinct amphiphilic compounds there is the opportunity of a huge number of theoretically possible combinations in the arrangements of these amphiphiles in the membrane. Among all these potential combinations, a specific local arrangement of the membrane would have favored the constitution of an hypercycle,<ref>{{cite journal |last1=Eigen |first1=Manfred |authorlink1=Manfred Eigen |last2=Schuster |first2=Peter |authorlink2=Peter Schuster |date=November 1977 |title=The Hypercycle. A Principle of Natural Self-Organization. Part A: Emergence of the Hypercycle |url=http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1977Naturwissenschaften64.pdf |format=PDF |journal=Naturwissenschaften |location=Berlin |publisher=Springer-Verlag |volume=64 |issue=11 |pp=541–565 |bibcode=1977NW.....64..541E |doi=10.1007/bf00450633 |issn=0028-1042 |pmid=593400 |accessdate=2015-06-13}} | |||
* {{cite journal |last1=Eigen |first1=Manfred |last2=Schuster |first2=Peter |year=1978 |title=The Hypercycle. A Principle of Natural Self-Organization. Part B: The Abstract Hypercycle |url=http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1978Naturwissenschaften65a.pdf |format=PDF |journal=Naturwissenschaften |location=Berlin |publisher=Springer-Verlag |volume=65 |pages=7–41 |bibcode=1978NW.....65....7E |doi=10.1007/bf00420631 |issn=0028-1042 |accessdate=2015-06-13}} | |||
* {{cite journal |last1=Eigen |first1=Manfred |last2=Schuster |first2=Peter |date=July 1978 |title=The Hypercycle. A Principle of Natural Self-Organization. Part C: The Realistic Hypercycle |url=http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1978Naturwissenschaften65b.pdf |format=PDF |journal=Naturwissenschaften |location=Berlin |publisher=Springer-Verlag |volume=65 |issue=7 |pages=341–369 |bibcode=1978NW.....65..341E |doi=10.1007/bf00439699 |issn=0028-1042 |accessdate=2015-06-13}}</ref><ref>{{cite journal |last1=Markovitch |first1=Omer |last2=Lancet |first2=Doron |date=Summer 2012 |title=Excess Mutual Catalysis Is Required for Effective Evolvability |url=http://www.mitpressjournals.org/doi/pdf/10.1162/artl_a_00064 |format=PDF |journal=] |location=Cambridge, MA |publisher=] |volume=18 |issue=3 |pages=243–266 |doi=10.1162/artl_a_00064 |issn=1064-5462 |pmid=22662913 |accessdate=2015-06-26}}</ref> actually a positive ] composed of two mutual catalysts represented by a membrane site and a specific compound trapped in the vesicle. Such site/compound pairs are transmissible to the daughter vesicles leading to the emergence of distinct ] of vesicles which would have allowed Darwinian natural selection.<ref>{{cite journal |last=Tessera |first=Marc |year=2011 |title=Origin of Evolution ''versus'' Origin of Life: A Shift of Paradigm |journal=] |location=Basel, Switzerland |publisher=MDPI |volume=12 |issue=6 |pages=3445–3458 |doi=10.3390/ijms12063445 |issn=1422-0067 |pmc=3131571 |pmid=21747687}} Special Issue: "Origin of Life 2011"</ref> | |||
Ice melts that form from ice sheets or glaciers melts create freshwater pools, another niche capable of experiencing wet-dry cycles. While these pools that exist on the surface would be exposed to intense UV radiation, bodies of water within and under ice are sufficiently shielded while remaining connected to UV exposed areas through ice cracks. Suggestions of impact melting of ice allow freshwater paired with meteoritic input, a popular vessel for prebiotic components.<ref>{{Cite journal |last1=Bada |first1=J. L. |last2=Bigham |first2=C. |last3=Miller |first3=S. L. |date=1994-02-15 |title=Impact melting of frozen oceans on the early Earth: Implications for the origin of life |journal=Proceedings of the National Academy of Sciences |volume=91 |issue=4 |pages=1248–1250 |doi=10.1073/pnas.91.4.1248 |pmc=43134 |pmid=11539550 |bibcode=1994PNAS...91.1248B |doi-access=free}}</ref> Near-seawater levels of sodium chloride are found to destabilize fatty acid membrane self-assembly, making freshwater settings appealing for early membranous life.<ref>{{Cite journal |last1=Monnard |first1=Pierre-Alain |last2=Apel |first2=Charles L. |last3=Kanavarioti |first3=Anastassia |last4=Deamer |first4=David W. |date=June 2002 |title=Influence of Ionic Inorganic Solutes on Self-Assembly and Polymerization Processes Related to Early Forms of Life: Implications for a Prebiotic Aqueous Medium |url=https://www.liebertpub.com/doi/10.1089/15311070260192237 |journal=Astrobiology |volume=2 |issue=2 |pages=139–152 |doi=10.1089/15311070260192237 |pmid=12469365 |bibcode=2002AsBio...2..139M |access-date=8 December 2023 |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131155030/https://www.liebertpub.com/doi/10.1089/15311070260192237 |url-status=live }}</ref> | |||
=== Polyphosphates === | |||
A problem in most scenarios of abiogenesis is that the thermodynamic equilibrium of amino acid versus peptides is in the direction of separate amino acids. What has been missing is some force that drives polymerization. The resolution of this problem may well be in the properties of ]s.<ref>{{cite journal |last1=Brown |first1=Michael R. W. |last2=Kornberg |first2=Arthur |authorlink2=Arthur Kornberg |date=16 November 2004 |title=Inorganic polyphosphate in the origin and survival of species |journal=Proc. Natl. Acad. Sci. U.S.A. |location=Washington, D.C. |publisher=National Academy of Sciences |volume=101 |issue=46 |pages=16085–16087 |bibcode=2004PNAS..10116085B |doi=10.1073/pnas.0406909101 |issn=0027-8424 |pmc=528972 |pmid=15520374}}</ref><ref>{{cite web |url=http://www.science.siu.edu/microbiology/micr425/425Notes/14-OriginLife.html |title=The Origin of Life |last=Clark |first=David P. |date=3 August 1999 |website=Microbiology 425: Biochemistry and Physiology of Microorganism |publisher=College of Science; ] |location=Carbondale, IL |type=Lecture |archiveurl=https://web.archive.org/web/20001002142750/http://www.science.siu.edu/microbiology/micr425/425Notes/14-OriginLife.html |archivedate=2000-10-02 |deadurl=yes |accessdate=2015-06-26}}</ref> Polyphosphates are formed by polymerization of ordinary monophosphate ions PO<sub>4</sub><sup>−3</sup>. Several mechanisms for such polymerization have been suggested. Polyphosphates cause polymerization of amino acids into peptides. They are also logical precursors in the synthesis of such key biochemical compounds as ] (ATP). A key issue seems to be that calcium reacts with soluble phosphate to form insoluble ] (]), so some plausible mechanism must be found to keep calcium ions from causing precipitation of phosphate. There has been much work on this topic over the years, but an interesting new idea is that meteorites may have introduced reactive phosphorus species on the early Earth.<ref>{{cite journal |last=Pasek |first=Matthew A. |date=22 January 2008 |title=Rethinking early Earth phosphorus geochemistry |journal=Proc. Natl. Acad. Sci. U.S.A. |location=Washington, D.C. |publisher=National Academy of Sciences |volume=105 |issue=3 |pages=853–858 |bibcode=2008PNAS..105..853P |doi=10.1073/pnas.0708205105 |issn=0027-8424 |pmc=2242691 |pmid=18195373}}</ref> | |||
Icy environments would trade the faster reaction rates that occur in warm environments for increased stability and accumulation of larger polymers.<ref>{{Cite journal |last1=Attwater |first1=James |last2=Wochner |first2=Aniela |last3=Holliger |first3=Philipp |date=December 2013 |title=In-ice evolution of RNA polymerase ribozyme activity |journal=Nature Chemistry |volume=5 |issue=12 |pages=1011–1018 |doi=10.1038/nchem.1781 |pmid=24256864 |pmc=3920166|bibcode=2013NatCh...5.1011A }}</ref> Experiments simulating Europa-like conditions of ~20 °C have synthesised amino acids and adenine, showing that Miller-Urey type syntheses can still occur at cold temperatures.<ref>{{Cite journal |last1=Levy |first1=Matthew |last2=Miller |first2=Stanley L. |last3=Brinton |first3=Karen |last4=Bada |first4=Jeffrey L. |date=2000-06-01 |title=Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions |url=https://www.sciencedirect.com/science/article/pii/S0019103500963656 |journal=Icarus |volume=145 |issue=2 |pages=609–613 |doi=10.1006/icar.2000.6365|pmid=11543508 |bibcode=2000Icar..145..609L }}</ref> In an ], the ribozyme would have had even more functions than in a later DNA-RNA-protein-world. For RNA to function, it must be able to fold, a process that is hindered by temperatures above 30 °C. While RNA folding in ] organisms is slower, the process is more successful as hydrolysis is also slower. Shorter nucleotides would not suffer from higher temperatures.<ref>{{Cite journal |last1=Moulton |first1=Vincent |last2=Gardner |first2=Paul P. |last3=Pointon |first3=Robert F. |last4=Creamer |first4=Lawrence K. |last5=Jameson |first5=Geoffrey B. |last6=Penny |first6=David |date=2000-10-01 |title=RNA Folding Argues Against a Hot-Start Origin of Life |journal=Journal of Molecular Evolution |volume=51 |issue=4 |pages=416–421 |doi=10.1007/s002390010104 |pmid=11040293 |bibcode=2000JMolE..51..416M |s2cid=20787323 |url=https://link.springer.com/article/10.1007/s002390010104 |archive-date=31 January 2024 |archive-url=https://web.archive.org/web/20240131155950/https://link.springer.com/article/10.1007/s002390010104 |url-status=live }}</ref><ref>{{Cite journal |last1=Zemora |first1=Georgeta |last2=Waldsich |first2=Christina |date=November 2010 |title=RNA folding in living cells |journal=RNA Biology |volume=7 |issue=6 |pages=634–641 |doi=10.4161/rna.7.6.13554 |pmid=21045541 |pmc=3073324 }}</ref> | |||
=== PAH world hypothesis === | |||
{{Main|PAH world hypothesis}} | |||
Polycyclic aromatic hydrocarbons (PAH) are known to be abundant in the Universe,<ref name="SP-20051018">{{cite news |last=Carey |first=Bjorn |date=18 October 2005 |title=Life's Building Blocks 'Abundant in Space' |url=http://www.space.com/1686-life-building-blocks-abundant-space.html |work=Space.com |location=Watsonville, CA |publisher=] |accessdate=2015-06-23}}</ref><ref name="AJ-20051010">{{cite journal |last1=Hudgins |first1=Douglas M. |last2=Bauschlicher |first2=Charles W., Jr. |last3=Allamandola |first3=Louis J. |date=10 October 2005 |title=Variations in the Peak Position of the 6.2 μm Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population |url=http://iopscience.iop.org/0004-637X/632/1/316/pdf/0004-637X_632_1_316.pdf |format=PDF |journal=] |location=Bristol, England |publisher=IOP Publishing for the American Astronomical Society |volume=632 |pages=316–332 |issue=1 |bibcode=2005ApJ...632..316H |doi=10.1086/432495 |issn=0004-637X}}</ref><ref name="NASA-20110413">{{cite web |url=http://amesteam.arc.nasa.gov/Research/cosmic.html |title=Cosmic Distribution of Chemical Complexity |last1=Des Marais |first1=David J. |last2=Allamandola |first2=Louis J. |last3=Sandford |first3=Scott |authorlink3=Scott Sandford |last4=Mattioda |first4=Andrew |last5=Gudipati |first5=Murthy |last6=Roser |first6=Joseph |last7=Bramall |first7=Nathan |last8=Nuevo |first8=Michel |last9=Boersma |first9=Christiaan |last10=Bernstein |first10=Max |last11=Peeters |first11=Els |last12=Cami |first12=Jan |last13=Cook |first13=Jamie Elsila |last14=Dworkin |first14=Jason |display-authors=3 |year=2009 |website=Ames Research Center |publisher=NASA |location=Mountain View, CA |accessdate=2015-06-24}} See the Ames Research Center 2009 annual team report to the ] here .</ref> including in the ], in comets, and in meteorites, and are some of the most complex molecules so far found in space.<ref name="NASA-20140221" /> | |||
Other sources of complex molecules have been postulated, including extraterrestrial stellar or interstellar origin. For example, from spectral analyses, organic molecules are known to be present in comets and meteorites. In 2004, a team detected traces of PAHs in a nebula.<ref>{{cite journal |last1=Witt |first1=Adolf N. |last2=Vijh |first2=Uma P. |last3=Gordon |first3=Karl D. |year=2003 |title=Discovery of Blue Fluorescence by Polycyclic Aromatic Hydrocarbon Molecules in the Red Rectangle |url=http://www.aas.org/publications/baas/v35n5/aas203/189.htm |journal=] |location=Washington, D.C. |publisher=American Astronomical Society |volume=35 |page=1381 |bibcode=2003AAS...20311017W |archiveurl=https://web.archive.org/web/20031219175322/http://www.aas.org/publications/baas/v35n5/aas203/189.htm |archivedate=2003-12-19 |deadurl=yes |accessdate=2015-06-26}} American Astronomical Society Meeting 203, #110.17, January 2004.</ref> In 2010, another team also detected PAHs, along with fullerenes, in nebulae.<ref name="AJL-20101120" /> The use of PAHs has also been proposed as a precursor to the RNA world in the PAH world hypothesis.{{citation needed|date=September 2012}} The ] has detected a star, HH 46-IR, which is forming by a process similar to that by which the Sun formed. In the disk of material surrounding the star, there is a very large range of molecules, including cyanide compounds, ]s, and carbon monoxide. In September 2012, NASA scientists reported that PAHs, subjected to interstellar medium conditions, are transformed, through ], ] and ], to more complex organics—"a step along the path toward amino acids and nucleotides, the raw materials of proteins and DNA, respectively."<ref name="Space-20120920">{{cite web |url=http://www.space.com/17681-life-building-blocks-nasa-organic-molecules.html |title=NASA Cooks Up Icy Organics to Mimic Life's Origins |date=20 September 2012 |work=Space.com |location=Ogden, UT |publisher=Purch |accessdate=2015-06-26}}</ref><ref name="AJL-20120901">{{cite journal |last1=Gudipati |first1=Murthy S. |author2=Rui Yang |date=1 September 2012 |title=In-situ Probing of Radiation-induced Processing of Organics in Astrophysical Ice Analogs—Novel Laser Desorption Laser Ionization Time-of-flight Mass Spectroscopic Studies |journal=The Astrophysical Journal Letters |location=Bristol, England |publisher=IOP Publishing for the American Astronomical Society |volume=756 |issue=1 |bibcode=2012ApJ...756L..24G |doi=10.1088/2041-8205/756/1/L24 |issn=2041-8213 |id=L24 |pages=L24}}</ref> Further, as a result of these transformations, the PAHs lose their ] which could be one of the reasons "for the lack of PAH detection in ] grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks."<ref name="Space-20120920" /><ref name="AJL-20120901" /> | |||
NASA maintains a database for tracking PAHs in the Universe.<ref name="NASA-20140221" /><ref>{{cite web |url=http://www.astrochem.org/pahdb/ |title=NASA Ames PAH IR Spectroscopic Database |publisher=NASA |accessdate=2015-06-17}}</ref> More than 20% of the carbon in the Universe may be associated with PAHs,<ref name="NASA-20140221" /><ref name="NASA-20140221" /> possible starting materials for the formation of life. PAHs seem to have been formed shortly after the Big Bang, are widespread throughout the Universe,<ref name="SP-20051018" /><ref name="AJ-20051010" /><ref name="NASA-20110413" /> and are associated with ] and ]s.<ref name="NASA-20140221" /> | |||
=== Radioactive beach hypothesis === | |||
Zachary Adam claims that tidal processes that occurred during a time when the Moon was much closer may have concentrated grains of ] and other radioactive elements at the high-water mark on primordial beaches, where they may have been responsible for generating life's building blocks.<ref>{{cite journal |last=Dartnell |first=Lewis |date=12 January 2008 |title=Did life begin on a radioactive beach? |url=http://www.newscientist.com/article/mg19726384.000-did-life-begin-on-a-radioactive-beach.html |journal=New Scientist |location=London |publisher=Reed Business Information |issue=2638 |page=8 |issn=0262-4079 |accessdate=2015-06-26}}</ref> According to computer models reported in '']'',<ref>{{cite journal |last=Adam |first=Zachary |year=2007 |title=Actinides and Life's Origins |journal=Astrobiology |location=New Rochelle, NY |publisher=Mary Ann Liebert, Inc. |volume=7 |issue=6 |pages=852–872 |bibcode=2007AsBio...7..852A |doi=10.1089/ast.2006.0066 |issn=1531-1074 |pmid=18163867}}</ref> a deposit of such radioactive materials could show the same ] as that found in the ] uranium ore seam in ]. Such radioactive beach sand might have provided sufficient energy to generate organic molecules, such as amino acids and sugars from ] in water. Radioactive ] material also has released soluble phosphate into the regions between sand-grains, making it biologically "accessible." Thus amino acids, sugars, and soluble phosphates might have been produced simultaneously, according to Adam. Radioactive ]s, left behind in some concentration by the reaction, might have formed part of ]. These complexes could have been important early catalysts to living processes. | |||
=== Inside the continental crust === | |||
John Parnell has suggested that such a process could provide part of the "crucible of life" in the early stages of any early wet rocky planet, so long as the planet is large enough to have generated a system of plate tectonics which brings radioactive minerals to the surface. As the early Earth is thought to have had many smaller plates, it might have provided a suitable environment for such processes.<ref>{{cite journal |last=Parnell |first=John |date=December 2004 |title=Mineral Radioactivity in Sands as a Mechanism for Fixation of Organic Carbon on the Early Earth |journal=Origins of Life and Evolution of Biospheres |publisher=Kluwer Academic Publishers |volume=34 |issue=6 |pages=533–547 |bibcode=2004OLEB...34..533P |doi=10.1023/B:ORIG.0000043132.23966.a1 |issn=0169-6149 |pmid=15570707}}</ref> | |||
An alternative geological environment has been proposed by the geologist Ulrich Schreiber and the physical chemist Christian Mayer: the ].<ref>{{Cite journal |last1=Schreiber |first1=Ulrich |last2=Locker-Grütjen |first2=Oliver |last3=Mayer |first3=Christian |date=2012 |title=Hypothesis: Origin of Life in Deep-Reaching Tectonic Faults |url=https://link.springer.com/10.1007/s11084-012-9267-4 |journal=Origins of Life and Evolution of Biospheres |language=en |volume=42 |issue=1 |pages=47–54 |doi=10.1007/s11084-012-9267-4 |pmid=22373604 |bibcode=2012OLEB...42...47S |issn=0169-6149}}</ref> ] zones could present a stable and well-protected environment for long-term prebiotic evolution. Inside these systems of cracks and cavities, water and carbon dioxide present the bulk solvents. Their phase state would depend on the local temperature and pressure conditions and could vary between liquid, gaseous and ]. When forming two separate phases (e.g., liquid water and supercritical carbon dioxide in depths of little more than 1 km), the system provides optimal conditions for ]. Concurrently, the contents of the tectonic fault zones are being supplied by a multitude of inorganic educts (e.g., carbon monoxide, hydrogen, ammonia, hydrogen cyanide, nitrogen, and even phosphate from dissolved apatite) and simple organic molecules formed by hydrothermal chemistry (e.g. amino acids, long-chain amines, fatty acids, long-chain aldehydes).<ref>{{Cite journal |last1=Schreiber |first1=Ulrich |last2=Mayer |first2=Christian |last3=Schmitz |first3=Oliver J. |last4=Rosendahl |first4=Pia |last5=Bronja |first5=Amela |last6=Greule |first6=Markus |last7=Keppler |first7=Frank |last8=Mulder |first8=Ines |last9=Sattler |first9=Tobias |last10=Schöler |first10=Heinz F. |date=2017-06-14 |editor-last=Stüeken |editor-first=Eva Elisabeth |title=Organic compounds in fluid inclusions of Archean quartz—Analogues of prebiotic chemistry on early Earth |journal=PLOS ONE |language=en |volume=12 |issue=6 |pages=e0177570 |doi=10.1371/journal.pone.0177570 |doi-access=free |issn=1932-6203 |pmc=5470662 |pmid=28614348|bibcode=2017PLoSO..1277570S }}</ref><ref>{{Cite journal |last1=Großmann |first1=Yildiz |last2=Schreiber |first2=Ulrich |last3=Mayer |first3=Christian |last4=Schmitz |first4=Oliver J. |date=2022-06-21 |title=Aliphatic Aldehydes in the Earth's Crust—Remains of Prebiotic Chemistry? |journal=Life |language=en |volume=12 |issue=7 |pages=925 |doi=10.3390/life12070925 |doi-access=free |issn=2075-1729 |pmc=9319801 |pmid=35888015|bibcode=2022Life...12..925G }}</ref> Finally, the abundant mineral surfaces provide a rich choice of catalytic activity. | |||
An especially interesting section of the tectonic fault zones is located at a depth of approximately 1000 m. For the carbon dioxide part of the bulk solvent, it provides temperature and pressure conditions near the ] point between the ] and the gaseous state. This leads to a natural accumulation zone for ] that dissolve well in ], but not in its gaseous state, leading to their local precipitation.<ref>{{Cite journal |last1=Mayer |first1=Christian |last2=Schreiber |first2=Ulrich |last3=Dávila |first3=María |date=2017-01-07 |title=Selection of Prebiotic Molecules in Amphiphilic Environments |journal=Life |language=en |volume=7 |issue=1 |pages=3 |doi=10.3390/life7010003 |doi-access=free |issn=2075-1729 |pmc=5370403 |pmid=28067845|bibcode=2017Life....7....3M }}</ref> Periodic pressure variations such as caused by ] or ] result in periodic phase transitions, keeping the local reaction environment in a constant ]. In presence of ] (such as the long chain amines and fatty acids mentioned above), subsequent generations of vesicles are being formed<ref>{{Cite journal |last1=Mayer |first1=Christian |last2=Schreiber |first2=Ulrich |last3=Dávila |first3=María J. |date=2015 |title=Periodic Vesicle Formation in Tectonic Fault Zones—an Ideal Scenario for Molecular Evolution |journal=Origins of Life and Evolution of Biospheres |language=en |volume=45 |issue=1–2 |pages=139–148 |doi=10.1007/s11084-015-9411-z |issn=0169-6149 |pmc=4457167 |pmid=25716918|bibcode=2015OLEB...45..139M }}</ref> that are constantly and efficiently being selected for their stability.<ref>{{Cite journal |last1=Mayer |first1=Christian |last2=Schreiber |first2=Ulrich |last3=Dávila |first3=María |last4=Schmitz |first4=Oliver |last5=Bronja |first5=Amela |last6=Meyer |first6=Martin |last7=Klein |first7=Julia |last8=Meckelmann |first8=Sven |date=2018-05-24 |title=Molecular Evolution in a Peptide-Vesicle System |journal=Life |language=en |volume=8 |issue=2 |pages=16 |doi=10.3390/life8020016 |doi-access=free |issn=2075-1729 |pmc=6027363 |pmid=29795023|bibcode=2018Life....8...16M }}</ref> The resulting structures could provide hydrothermal vents as well as hot springs with raw material for further development. | |||
=== Thermodynamic dissipation === | |||
Karo Michaelian from the ] (UNAM) points out that any model for the origin of life must take into account the fact that life is an irreversible thermodynamic process and, like all irreversible processes, its origin and persistence as a "self-organized" system is due to its dissipation an imposed generalized chemical potential, i.e., the production of ]. That is, entropy production is not incidental to the process of life, but rather the fundamental reason for its existence. Present day life augments the entropy production of Earth in its solar environment by dissipating ultraviolet and visible photons into heat through organic ]s in water. This heat then catalyzes a host of secondary dissipative processes such as the water cycle, ocean and wind currents, hurricanes, etc.<ref>{{cite arXiv |last=Michaelian |first=Karo |eprint=0907.0040 |title=Thermodynamic Function of Life |class=physics.gen-ph |date=30 June 2009}}</ref><ref>{{cite journal |last=Michaelian |first=Karo |date=25 January 2011 |title=Biological catalysis of the hydrological cycle: life's thermodynamic function |journal=Hydrology and Earth System Sciences Discussions |location=Göttingen, Germany |publisher=] on behalf of the ] |volume=8 |pages=1093–1123 |bibcode=2011HESSD...8.1093M |doi=10.5194/hessd-8-1093-2011 |issn=1812-2116}}</ref> Michaelian argues that if the thermodynamic function of life today is to produce entropy through photon dissipation, then this probably was its function at its very beginnings.<ref name="Michaelian 2011 37–51">{{cite journal |last=Michaelian |first=Karo |date=11 March 2011 |title=Thermodynamic Dissipation Theory for the Origin of Life |url=http://www.earth-syst-dynam.net/2/37/2011/esd-2-37-2011.pdf |format=PDF |journal=Earth System Dynamics |location=Göttingen, Germany |publisher=Copernicus Publications on behalf of the European Geosciences Union |volume=2 |pages=37–51 |arxiv=0907.0042 |bibcode=2011ESD.....2...37M |doi=10.5194/esd-2-37-2011 |issn=2190-4987 |accessdate=2015-06-28}}</ref> It turns out that both RNA and DNA when in water solution are very strong absorbers and extremely rapid dissipaters of UV light within the 230–290 nm wavelength region, which is a part of the Sun's spectrum that could have penetrated the prebiotic atmosphere.<ref name="Cnossen-2007">{{cite journal |last1=Cnossen |first1=Ingrid |last2=Sanz-Forcada |first2=Jorge |last3=Favata |first3=Fabio |last4=Witasse |first4=Olivier |last5=Zegers |first5=Tanja |last6=Arnold |first6=Neil F. |display-authors=3 |date=February 2007 |title=Habitat of early life: Solar X-ray and UV radiation at Earth's surface 4–3.5 billion years ago |journal=Journal of Geophysical Research |location=Washington, D.C. |publisher=American Geophysical Union |volume=112 |issue=E2 |page=E02008 |arxiv=astro-ph/0702529 |bibcode=2007JGRE..112.2008C |doi=10.1029/2006JE002784 |issn=0148-0227}}</ref> The amount of ultraviolet (UV-C) light reaching the Earth's surface within this spectral range in the Archean could have been on the order of 4 W/m<sup>2</sup>,<ref>{{cite journal |last=Sagan |first=Carl |date=April 1973 |title=Ultraviolet Selection Pressure on the Earliest Organisms |journal=Journal of Theoretical Biology |location=Amsterdam, the Netherlands |publisher=Elsevier |volume=39 |issue=1 |pages=195–200 |doi=10.1016/0022-5193(73)90216-6 |issn=0022-5193 |pmid=4741712}}</ref> or some 31 orders of magnitude greater than it is today at 260 nm where RNA and DNA absorb most strongly.<ref name="Cnossen-2007" /> In fact, not only RNA and DNA, but many fundamental molecules of life (those common to all three domains of life, archea, bacteria, and eucaryote) are also pigments that absorb in the UV-C, and many of these also have a chemical affinity to RNA and DNA.<ref>{{cite journal|last1=Michaelian|first1=Karo|last2=Simeonov|first2=Aleksander|title=Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum|journal=Biogeosciences|date=19 August 2015|volume=12|pages=4913–4937|doi=10.5194/bg-12-4913-2015|url=http://www.biogeosciences.net/12/4913/2015/}}</ref><ref>{{cite arXiv |last1=Michaelian |first1=Karo |last2=Simeonov |first2=Aleksandar |eprint=1405.4059 |title=Fundamental Molecules of Life are Pigments which Arose and Evolved to Dissipate the Solar Spectrum |class=physics.bio-ph |date=16 May 2014}}</ref> Nucleic acids may thus have acted as acceptor molecules to the UV-C photon excited antenna pigment donor molecules by providing an ultrafast channel for dissipation. Michaelian has shown that there would have existed a non-linear, non-equilibrium thermodynamic imperative to the abiogenic UV-C photochemical synthesis <ref name="pmid19444213">{{cite journal |last1=Powner |first1=Matthew W. |last2=Gerland |first2=Béatrice |last3=Sutherland |first3=John D. |date=14 May 2009 |title=Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions |journal=Nature |location=London |publisher=Nature Publishing Group |volume=459 |issue=7244 |pages=239–242 |bibcode=2009Natur.459..239P |doi=10.1038/nature08013 |issn=0028-0836 |pmid=19444213}}</ref> and proliferation of these pigments over the entire Earth surface if they augmented the solar photon dissipation rate.<ref>{{cite journal |last1=Michaelian |first1=Karo |year=2013 |title=A non-linear irreversible thermodynamic perspective on organic pigment proliferation and biological evolution |url=http://iopscience.iop.org/1742-6596/475/1/012010/pdf/1742-6596_475_1_012010.pdf |format=PDF |journal=] |location=Bristol, England |publisher=IOP Publishing |volume=475 |issue=conference 1 |page=012010 |bibcode=2013JPhCS.475a2010M |arxiv=1307.5924 |doi=10.1088/1742-6596/475/1/012010 |issn=1742-6596}} "4th National Meeting in Chaos, Complex System and Time Series 29 November to 2 December 2011, Xalapa, Veracruz, Mexico"</ref> | |||
== Homochirality == | |||
A simple mechanism to explain enzyme-less replication of RNA and DNA can be given within the same dissipative thermodynamic framework by assuming that life arose when the temperature of the primitive seas had cooled to somewhat below the ] temperature of RNA or DNA. The ratio of <sup>18</sup>O/<sup>16</sup>O found in ]s of the ] of ] indicates that the Earth’s surface temperature was around 80 °C at 3.8 Ga,<ref>{{harvnb|Knauth|1992|pp=123–152}}</ref><ref>{{cite journal |last1=Knauth |first1=L. Paul |last2=Lowe |first2=Donald R. |date=May 2003 |title=High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland group, South Africa |journal=Geological Society of America Bulletin |location=Boulder, CO |publisher=] |volume=115 |pages=566–580 |bibcode=2003GSAB..115..566K |doi=10.1130/0016-7606(2003)115<0566:hactif>2.0.co;2 |issn=0016-7606}}</ref> falling to 70±15 °C about 3.5 to 3.2 Ga,<ref>{{cite journal |last1=Lowe |first1=Donald R. |last2=Tice |first2=Michael M. |date=June 2004 |title=Geologic evidence for Archean atmospheric and climatic evolution: Fluctuating levels of CO<sub>2</sub>, CH<sub>4</sub>, and O<sub>2</sub> with an overriding tectonic control |journal=Geology |location=Boulder, CO |publisher=Geological Society of America |volume=32 |issue=6 |pages=493–496 |bibcode=2004Geo....32..493L |doi=10.1130/G20342.1 |issn=0091-7613}}</ref> suggestively close to RNA or DNA denaturing (uncoiling and separation) temperatures. During the night, the surface water temperature would drop below the denaturing temperature and single strand RNA/DNA could act as extension template for the formation of double strand RNA/DNA. During the daylight hours, RNA and DNA would absorb UV-C light and convert this directly into heat at the ocean surface, thereby raising the local temperature enough to allow for denaturing of RNA and DNA. Direct experimental evidence for the denaturing of DNA through UV-C light dissipation has now been obtained.<ref>{{cite journal |last1=Michaelian |first1=Karo |last2=Santillán Padilla |first2=Norberto |date=24 November 2014 |title=DNA Denaturing through UV-C Photon Dissipation: A Possible Route to Archean Non-enzymatic Replication |url=http://biorxiv.org/content/biorxiv/early/2014/11/24/009126.full.pdf |format=PDF |journal=bioRxiv |location=Cold Spring Harbor, NY |publisher=Cold Spring Harbor Laboratory |doi=10.1101/009126 |accessdate=2015-06-29}}</ref> | |||
{{main|Homochirality}} | |||
The copying process would have been repeated with each diurnal cycle.<ref name="Michaelian 2011 37–51" /> Such an ultraviolet and temperature assisted RNA/DNA reproduction (UVTAR) bears similarity to ] (PCR), a routine laboratory procedure employed to multiply DNA segments. Since denaturation would be most probable in the late afternoon when the Archean sea surface temperature would be highest, and since late afternoon submarine sunlight is somewhat circularly polarized, the homochirality of the organic molecules of life can also be explained within the proposed thermodynamic framework.<ref name="Michaelian 2011 37–51" /> | |||
], are ], and occur in living systems in only one of the two possible forms, in the case of ]s the left-handed form. Prebiotic chemistry would produce both forms, creating a puzzle for abiogenesis researchers.<ref name="Plasson2007"/>]] | |||
The fact that the aromatic amino acids have been shown to have chemical affinity to their codons, or anti-codons, and that they also absorb strongly in the UV-C, suggests that they might have originally acted as antenna pigments to increase dissipation and to provide more local heat for UVTAR replication of RNA and DNA as the sea surface temperature cooled. The accumulation of information, e.g., coding for the aromatic amino acids, in RNA or DNA would thus be related to reproductive success under this mechanism. Michaelian suggests that the traditional origin of life research, that expects to describe the emergence of life without overwhelming reference to entropy production through dissipation, is erroneous and that imposed environmental potentials, such as the solar photon flux, and the dissipation of this flux, must be considered to understand the emergence, proliferation, and evolution of life. | |||
Homochirality is the geometric uniformity of materials composed of ] (non-mirror-symmetric) units. Living organisms use molecules that have the same chirality (handedness): with almost no exceptions,<ref>{{harvnb|Chaichian|Rojas|Tureanu|2014|pp=353–364}}</ref> amino acids are left-handed while nucleotides and ] are right-handed. Chiral molecules can be synthesized, but in the absence of a chiral source or a chiral catalyst, they are formed in a 50/50 (racemic) mixture of both ]. Known mechanisms for the production of non-racemic mixtures from racemic starting materials include: asymmetric physical laws, such as the ]; asymmetric environments, such as those caused by ] light, ], or the Earth's rotation, ] during racemic synthesis,<ref name="Plasson2007">{{cite journal |last1=Plasson |first1=Raphaël |last2=Kondepudi |first2=Dilip K. |last3=Bersini |first3=Hugues |last4=Commeyras |first4=Auguste |last5=Asakura |first5=Kouichi |display-authors=3 |date=August 2007 |title=Emergence of homochirality in far-from-equilibrium systems: Mechanisms and role in prebiotic chemistry |journal=] |volume=19 |issue=8 |pages=589–600 |doi=10.1002/chir.20440 |pmid=17559107}} "Special Issue: Proceedings from the Eighteenth International Symposium on Chirality (ISCD-18), Busan, Korea, 2006"</ref> and ].<ref name="jafarpour2017">{{cite journal |last1=Jafarpour |first1=Farshid |last2=Biancalani |first2=Tommaso |last3=Goldenfeld |first3=Nigel |author-link3=Nigel Goldenfeld |year=2017 |title=Noise-induced symmetry breaking far from equilibrium and the emergence of biological homochirality |url=http://dspace.mit.edu/bitstream/1721.1/109170/1/PhysRevE.95.032407.pdf |journal=] |volume=95 |issue=3 |page=032407 |bibcode=2017PhRvE..95c2407J |doi=10.1103/PhysRevE.95.032407 |pmid=28415353 |doi-access=free |access-date=29 August 2019 |archive-date=2 April 2023 |archive-url=https://web.archive.org/web/20230402201812/http://dspace.mit.edu/bitstream/handle/1721.1/109170/PhysRevE.95.032407.pdf;jsessionid=14B762FE82E5B78CD32F99AEE6E1A5F5?sequence=1 |url-status=live }}</ref><ref name="jafarpour2015">{{cite journal |last1=Jafarpour |first1=Farshid |last2=Biancalani |first2=Tommaso |last3=Goldenfeld |first3=Nigel |author-link3=Nigel Goldenfeld |year=2015 |title=Noise-induced mechanism for biological homochirality of early life self-replicators |journal=] |volume=115 |issue=15 |page=158101 |arxiv=1507.00044 |bibcode=2015PhRvL.115o8101J |doi=10.1103/PhysRevLett.115.158101 |pmid=26550754 |s2cid=9775791}}</ref><ref name="frank1953">{{cite journal |last1=Frank |first1=F. C. |year=1953 |title=On spontaneous asymmetric synthesis |journal=] |volume=11 |issue=4 |pages=459–463 |doi=10.1016/0006-3002(53)90082-1 |pmid=13105666}}</ref> | |||
A similar hypothesis has been advanced by ], an American physicist at the ], with his statistical physics arguments to explain the spontaneous emergence of life, and consequently, Darwinian evolution.<ref>{{cite web |url=http://rt.com/usa/massachusetts-physicist-solve-mystery-life-098/ |title=Massachusetts physicist claims he solved mystery of how life emerged from matter |date=Jan 23, 2014 |website=RT |accessdate=Dec 11, 2014}}</ref><ref name='NewPh'>{{cite web |url=http://www.scientificamerican.com/article/a-new-physics-theory-of-life/ |title=A New Physics Theory of Life |last1=Wolchover |first1=Natalie |date=Jan 28, 2014 |website=] |accessdate=Dec 11, 2014}}</ref> England terms this process 'dissipative-driven adaptation', and proposes it as an explanation of the origin of life.<ref>{{Cite journal| last = Perunov| first = Nikolai| last2 = Marsland| first2 = Robert|last3 = England| first3 = Jeremy| date = 2014-12-04| title = Statistical Physics of Adaptation| url = http://arxiv.org/abs/1412.1875| journal = arXiv:1412.1875 }}</ref> | |||
Once established, chirality would be selected for.<ref>{{cite journal |last=Clark |first=Stuart |author-link=Stuart Clark (author) |date=July–August 1999 |title=Polarized Starlight and the Handedness of Life |journal=] |volume=87 |issue=4 |page=336 |bibcode=1999AmSci..87..336C |doi=10.1511/1999.30.336 |s2cid=221585816 }}</ref> A small bias (]) in the population can be amplified into a large one by ], such as in the ].<ref>{{cite journal |last1=Shibata |first1=Takanori |last2=Morioka |first2=Hiroshi |last3=Hayase |first3=Tadakatsu |last4=Choji |first4=Kaori |last5=Soai |first5=Kenso |author5-link=Kensō Soai |display-authors=3 |date=17 January 1996 |title=Highly Enantioselective Catalytic Asymmetric Automultiplication of Chiral Pyrimidyl Alcohol |journal=] |volume=118 |issue=2 |pages=471–472 |doi=10.1021/ja953066g|bibcode=1996JAChS.118..471S }}</ref> In asymmetric autocatalysis, the catalyst is a chiral molecule, which means that a chiral molecule is catalyzing its own production. An initial enantiomeric excess, such as can be produced by polarized light, then allows the more abundant enantiomer to outcompete the other.<ref name="Soai2001">{{cite journal |last1=Soai |first1=Kenso |last2=Sato |first2=Itaru |last3=Shibata |first3=Takanori |year=2001 |title=Asymmetric autocatalysis and the origin of chiral homogeneity in organic compounds |journal=The Chemical Record |volume=1 |issue=4 |pages=321–332 |doi=10.1002/tcr.1017 |pmid=11893072}}</ref> | |||
=== Multiple genesis === | |||
Different forms of life with variable origin processes may have appeared quasi-simultaneously in the early ].<ref>{{cite journal |last=Davies |first=Paul |authorlink=Paul Davies |date=December 2007 |title=Are Aliens Among Us? |url=http://www.zo.utexas.edu/courses/kalthoff/bio301c/readings/07Davies.pdf |format=PDF |journal=Scientific American |location=Stuttgart |publisher=Georg von Holtzbrinck Publishing Group |volume=297 |issue=6 |pages=62–69 |doi=10.1038/scientificamerican1207-62 |issn=0036-8733 |accessdate=2015-07-16 |quote=...if life does emerge readily under terrestrial conditions, then perhaps it formed many times on our home planet. To pursue this possibility, deserts, lakes and other extreme or isolated environments have been searched for evidence of "alien" life-forms—organisms that would differ fundamentally from known organisms because they arose independently.}}</ref> The other forms may be extinct (having left distinctive fossils through their different biochemistry—e.g., ]). It has been proposed that: | |||
Homochirality may have started in outer space, as on the ] the amino acid ] (left-handed) is more than twice as frequent as its D (right-handed) form, and ] is more than three times as abundant as its D counterpart.<ref>{{harvnb|Hazen|2005|p=184}}</ref><ref name="Meierhenrich">{{cite book |last1=Meierhenrich |first1=Uwe |title=Amino acids and the asymmetry of life caught in the act of formation |date=2008 |publisher=Springer |isbn=978-3-540-76886-9 |location=Berlin |pages=76–79}}</ref> Amino acids from meteorites show a left-handed bias, whereas sugars show a predominantly right-handed bias: this is the same preference found in living organisms, suggesting an abiogenic origin of these compounds.<ref name="StarStuff">{{cite journal |last=Mullen |first=Leslie |title=Building Life from Star-Stuff |journal=] |date=5 September 2005 |url=http://www.astrobio.net/news-exclusive/building-life-from-star-stuff/ |url-status=usurped |archive-url=https://web.archive.org/web/20150714084344/http://www.astrobio.net/news-exclusive/building-life-from-star-stuff/ |archive-date=14 July 2015}}</ref> | |||
<blockquote>The first organisms were self-replicating iron-rich clays which fixed carbon dioxide into oxalic and other ]s. This system of replicating clays and their metabolic phenotype then evolved into the sulfide rich region of the hotspring acquiring the ability to fix nitrogen. Finally phosphate was incorporated into the evolving system which allowed the synthesis of nucleotides and phospholipids. If biosynthesis recapitulates biopoiesis, then the synthesis of amino acids preceded the synthesis of the purine and pyrimidine bases. Furthermore the polymerization of the amino acid thioesters into polypeptides preceded the directed polymerization of amino acid esters by polynucleotides.<ref>{{cite journal |last=Hartman |first=Hyman |date=October 1998 |title=Photosynthesis and the Origin of Life |journal=Origins of Life and Evolution of Biospheres |publisher=Kluwer Academic Publishers |volume=28 |issue=4–6 |pages=515–521 |bibcode=1998OLEB...28..515H |doi=10.1023/A:1006548904157 |issn=0169-6149 |pmid=11536891}}</ref></blockquote> | |||
In a 2010 experiment by Robert Root-Bernstein, "two D-RNA-oligonucleotides having inverse base sequences (D-CGUA and D-AUGC) and their corresponding L-RNA-oligonucleotides (L-CGUA and L-AUGC) were synthesized and their affinity determined for Gly and eleven pairs of L- and D-amino acids". The results suggest that homochirality, including codon directionality, might have "emerged as a function of the origin of the genetic code".<ref>{{Cite journal |last=Root-Bernstein |first=Robert |date=23 June 2010 |title=Experimental Test of L- and D-Amino Acid Binding to L- and D-Codons Suggests that Homochirality and Codon Directionality Emerged with the Genetic Code |journal=Symmetry |volume=2 |issue=2 |pages=1180–1200 |doi=10.3390/sym2021180 |bibcode=2010Symm....2.1180R |doi-access=free }}</ref> | |||
=== Fluctuating hydrothermal pools on volcanic islands === | |||
Bruce Damer and David Deamer have come to the conclusion that cell membranes cannot be formed in salty seawater, and must therefore have originated in freshwater. Before the continents formed, the only dry land on earth would be volcanic islands, where rainwater would form ponds where lipids could form the first stages towards cell membranes. These predecessors of true cells are assumed to have behaved more like a ] rather than individual structures, where the porous membranes would house molecules which would leak out and enter other protocells. Only when true cells had evolved would they gradually adapt to saltier environments and enter the ocean.<ref>{{cite journal |last1=Damer |first1=Bruce |last2=Deamer |first2=David |date=13 March 2015 |title=Coupled Phases and Combinatorial Selection in Fluctuating Hydrothermal Pools: A Scenario to Guide Experimental Approaches to the Origin of Cellular Life |journal=Life |location=Basel, Switzerland |publisher=MDPI |volume=5 |issue=1 |pages=872–887 |doi=10.3390/life5010872 |issn=2075-1729 |pmc=4390883 |pmid=25780958}}</ref> | |||
== See also == | == See also == | ||
* ] | |||
{{cmn|3| | |||
* ] | * ] | ||
* {{Annotated link|Formamide-based prebiotic chemistry}} | |||
* ] | |||
* {{Annotated link|Proto-metabolism}} | |||
* ] | |||
* {{Annotated link|GADV-protein world hypothesis}} | |||
* ] | |||
* {{Annotated link|Genetic recombination}} | |||
* ] | |||
* {{Annotated link|Shadow biosphere}} | |||
* ] | |||
* ] | * ] | ||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
}} | |||
== Notes == | == Notes == | ||
{{reflist|group=note}} | |||
{{notelist}} | |||
== References == | == References == | ||
{{Reflist|30em}} | |||
{{reflist}} | |||
== Bibliography == | |||
{{Refbegin|30em}} | |||
* {{cite book |last=Altermann |first=Wladyslaw |year=2009 |chapter=From Fossils to Astrobiology – A Roadmap to Fata Morgana? |chapterurl=http://download.springer.com/static/pdf/317/bfm%253A978-1-4020-8837-7%252F1.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fbook%2Fbfm%3A978-1-4020-8837-7%2F1&token2=exp=1433302127~acl=%2Fstatic%2Fpdf%2F317%2Fbfm%25253A978-1-4020-8837-7%25252F1.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fbook%252Fbfm%253A978-1-4020-8837-7%252F1*~hmac=76abd49e5cbcaa8a0308a5e36fa76f514dfd07d4113d34f7929bb12adf277a8c |editor1-last=Seckbach |editor1-first=Joseph |editor2-last=Walsh |editor2-first=Maud |title=From Fossils to Astrobiology: Records of Life on Earth and the Search for Extraterrestrial Biosignatures |series=Cellular Origin, Life in Extreme Habitats and Astrobiology |volume=12 |location=Dordrecht, the Netherlands; London |publisher=] |isbn=978-1-4020-8836-0 |lccn=2008933212 |accessdate=2015-06-05 |ref=harv}} | |||
* {{cite book |last1=Bada |first1=Jeffrey L. |authorlink1=Jeffrey L. Bada |last2=Lazcano |first2=Antonio |authorlink2=Antonio Lazcano |year=2009 |chapter=The Origin of Life |editor1-last=Ruse |editor1-first=Michael |editor1-link=Michael Ruse |editor2-last=Travis |editor2-first=Joseph |editor2-link=Joseph Travis |title=Evolution: The First Four Billion Years |others=Foreword by ] |location=Cambridge, MA |publisher=] |isbn=978-0-674-03175-3 |lccn=2008030270 |oclc=225874308 |ref=harv}} | |||
* {{cite book |last1=Barton |first1=Nicholas H. |authorlink1=Nick Barton |last2=Briggs |first2=Derek E. G. |authorlink2=Derek Briggs |last3=Eisen |first3=Jonathan A. |authorlink3=Jonathan Eisen |last4=Goldstein |first4=David B. |last5=Patel |first5=Nipan H. |display-authors=3 |year=2007 |title=Evolution |location=Cold Spring Harbor, NY |publisher=Cold Spring Harbor Laboratory Press |isbn=978-0-87969-684-9 |lccn=2007010767 |oclc=86090399 |ref=harv}} | |||
* {{cite book |last=Bastian |first=H. Charlton |authorlink=Henry Charlton Bastian |year=1871 |title=The Modes of Origin of Lowest Organisms |url=https://archive.org/details/modesoforiginofl00bast |location=London; New York |publisher=] |lccn=11004276 |oclc=42959303 |accessdate=2015-06-06 |ref=harv}} | |||
* {{cite book |last=Bernal |first=J. D. |authorlink=John Desmond Bernal |year=1951 |title=The Physical Basis of Life |location=London |publisher=] & Kegan Paul |lccn=51005794 |ref=harv}} | |||
* {{cite book |last=Bernal |first=J. D. |year=1960 |chapter=The Problem of Stages in Biopoesis |editor-last=Florkin |editor-first=M. |editor-link=Marcel Florkin |title=Aspects of the Origin of Life |series=International Series of Monographs on Pure and Applied Biology |location=Oxford, UK; New York |publisher=] |isbn=978-1-4831-3587-8 |lccn=60013823 |ref=harv}} | |||
* {{cite book |last=Bernal |first=J. D. |year=1967 |origyear=Reprinted work by ] originally published 1924; Moscow: ] |title=The Origin of Life |series=The Weidenfeld and Nicolson Natural History |others=Translation of Oparin by Ann Synge |location=London |publisher=] |lccn=67098482 |ref=harv}} | |||
* {{cite book |editor1-last=Bock |editor1-first=Gregory R. |editor2-last=Goode |editor2-first=Jamie A. |year=1996 |title=Evolution of Hydrothermal Ecosystems on Earth (and Mars?) |series=Ciba Foundation Symposium |volume=202 |location=Chichester, UK; New York |publisher=] |isbn=0-471-96509-X |lccn=96031351 |ref=harv}} | |||
* {{cite book |last=Bondeson |first=Jan |authorlink=Jan Bondeson |year=1999 |title=The Feejee Mermaid and Other Essays in Natural and Unnatural History |location=Ithaca, NY |publisher=] |isbn=0-8014-3609-5 |lccn=98038295 |ref=harv}} | |||
* {{cite book |last=Bryson |first=Bill |authorlink=Bill Bryson |year=2004 |title=] |location=London |publisher=] |isbn=978-0-552-99704-1 |oclc=55589795 |ref=harv}} | |||
* {{cite book |last=Calvin |first=Melvin |authorlink=Melvin Calvin |year=1969 |title=Chemical Evolution: Molecular Evolution Towards the Origin of Living Systems on the Earth and Elsewhere |location=Oxford, UK |publisher=] |isbn=0-19-855342-0 |lccn=70415289 |oclc=25220 |ref=harv}} | |||
* {{cite book |last1=Chaichian |first1=Masud |last2=Rojas |first2=Hugo Perez |last3=Tureanu |first3=Anca |year=2014 |chapter=Physics and Life |title=Basic Concepts in Physics: From the Cosmos to Quarks |series=Undergraduate Lecture Notes in Physics |location=Berlin; Heidelberg |publisher=] |doi=10.1007/978-3-642-19598-3_12 |isbn=978-3-642-19597-6 |issn=2192-4791 |lccn=2013950482 |oclc=900189038 |ref=harv}} | |||
* {{cite book |last=Chang |first=Thomas Ming Swi |authorlink=Thomas Chang |year=2007 |title=Artificial Cells: Biotechnology, Nanomedicine, Regenerative Medicine, Blood Substitutes, Bioencapsulation, and Cell/Stem Cell Therapy |series=Regenerative Medicine, Artificial Cells and Nanomedicine |volume=1 |location=Hackensack, NJ |publisher=] |isbn=978-981-270-576-1 |lccn=2007013738 |oclc=173522612 |ref=harv}} | |||
* {{cite book |last1=Clancy |first1=Paul |last2=Brack |first2=André |last3=Horneck |first3=Gerda |year=2005 |title=Looking for Life, Searching the Solar System |location=Cambridge, UK |publisher=] |isbn=978-0-521-82450-7 |lccn=2006271630 |oclc=57574490 |ref=harv}} | |||
* {{cite book |last=Dalrymple |first=G. Brent |authorlink=Brent Dalrymple |year=2001 |chapter=The age of the Earth in the twentieth century: a problem (mostly) solved |editor1-last=Lewis |editor1-first=C. L. E. |editor2-last=Knell |editor2-first=S. J. |title=The Age of the Earth: from 4004 BC to AD 2002 |series=Geological Society Special Publication |location=London |publisher=] |volume=190 |bibcode=2001GSLSP.190..205D |doi=10.1144/gsl.sp.2001.190.01.14 |isbn=1-86239-093-2 |issn=0305-8719 |lccn=2003464816 |oclc=48570033 |ref=harv}} | |||
* {{cite book |last=Darwin |first=Charles |authorlink=Charles Darwin |year=1887 |editor-last=Darwin |editor-first=Francis |editor-link=Francis Darwin |title=], Including an Autobiographical Chapter |volume=3 |edition=3rd |location=London |publisher=] |oclc=834491774 |ref=harv}} | |||
* {{cite book |last=Davies |first=Geoffrey F. |year=2007 |chapter=Chapter 2.3 Dynamics of the Hadean and Archaean Mantle |editor1-last=van Kranendonk |editor1-first=Martin J. |editor2-last=Smithies |editor2-first=R. Hugh |editor3-last=Bennett |editor3-first=Vickie C. |title=Earth's Oldest Rocks |series=Developments in Precambrian Geology |volume=15 |location=Amsterdam, the Netherlands; Boston |publisher=] |doi=10.1016/S0166-2635(07)15023-4 |isbn=978-0-444-52810-0 |lccn=2009525003 |ref=harv}} | |||
* {{cite book |last=Davies |first=Paul |authorlink=Paul Davies |year=1999 |title=The Fifth Miracle: The Search for the Origin of Life |location=London |publisher=] |isbn=0-14-028226-2 |ref=harv}} | |||
* {{cite book |last=Dawkins |first=Richard |authorlink=Richard Dawkins |year=1996 |title=] |edition=Reissue with a new introduction |location=New York |publisher=] |isbn=0-393-31570-3 |lccn=96229669 |oclc=35648431 |ref=harv}} | |||
* {{cite book |last=Dawkins |first=Richard |year=2004 |title=]: A Pilgrimage to the Dawn of Evolution |location=Boston, MA |publisher=] |isbn=0-618-00583-8 |lccn=2004059864 |oclc=56617123 |ref=harv}} | |||
* {{cite book |last=Dobell |first=Clifford |authorlink=Clifford Dobell |title=Antony van Leeuwenhoek and His 'Little Animals' |year=1960 |origyear=Originally published 1932; New York: ] |location=New York |publisher=] |lccn=60002548 |ref=harv}} | |||
* {{cite book |last=Dyson |first=Freeman |authorlink=Freeman Dyson |year=1999 |title=Origins of Life |edition=Revised |location=Cambridge, UK; New York |publisher=] |isbn=0-521-62668-4 |lccn=99021079 |ref=harv}} | |||
* {{cite book |last1=Eigen |first1=M. |authorlink1=Manfred Eigen |last2=Schuster |first2=P. |authorlink2=Peter Schuster |year=1979 |title=The Hypercycle: A Principle of Natural Self-Organization |location=Berlin; New York |publisher=] |isbn=0-387-09293-5 |lccn=79001315 |oclc=4665354 |ref=harv}} | |||
* {{cite book |last=Fesenkov |first=V. G. |authorlink=Vasily Fesenkov |year=1959 |chapter=Some Considerations about the Primaeval State of the Earth |editor1-last=Oparin |editor1-first=A. I. |editor1-link=Alexander Oparin |editor2-last=Braunshtein |editor2-first=A. E. |editor3-last=Pasynskii |editor3-first=A. G. |editor4-last=Pavlovskaya |editor4-first=T. E. |display-editors=1 |title=The Origin of Life on the Earth |url=https://archive.org/details/proceedings00inte |series=I.U.B. Symposium Series |volume=1 |others=Edited for the ] by Frank Clark and ] |edition=English-French-German |location=London; New York |publisher=] |isbn=978-1-4832-2240-0 |lccn=59012060 |accessdate=2015-06-03 |ref=harv}} International Symposium on the Origin of Life on the Earth (held at Moscow, 19–24 August 1957) | |||
* {{cite book |last=Hazen |first=Robert M. |authorlink=Robert Hazen |title=Genesis: The Scientific Quest for Life's Origin |year=2005 |location=Washington, D.C. |publisher=] |isbn=0-309-09432-1 |lccn=2005012839 |oclc=60321860 |ref=harv}} | |||
* {{cite book |last=Huxley |first=Thomas Henry |authorlink=Thomas Henry Huxley |year=1968 |origyear=Originally published 1897 |chapter=VIII Biogenesis and Abiogenesis |chapterurl=http://aleph0.clarku.edu/huxley/CE8/B-Ab.html |title=Discourses, Biological and Geological |series=Collected Essays |volume=VIII |edition=Reprint |location=New York |publisher=] |lccn=70029958 |accessdate=2014-05-19 |ref=harv}} | |||
* {{cite book |last=Kauffman |first=Stuart |authorlink=Stuart Kauffman |year=1993 |title=The Origins of Order: Self-Organization and Selection in Evolution |location=New York |publisher=] |isbn=978-0-19-507951-7 |lccn=91011148 |oclc=23253930 |ref=harv}} | |||
* {{cite book |last=Kauffman |first=Stuart |year=1995 |title=At Home in the Universe: The Search for Laws of Self-Organization and Complexity |location=New York |publisher=Oxford University Press |isbn=0-19-509599-5 |lccn=94025268 |ref=harv}} | |||
* {{cite conference |url=http://www.panspermia.org/oseti.htm |title=Panspermia Asks New Questions |first=Brig |last=Klyce |date=22 January 2001 |conference=The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum III |conference-url=http://www.coseti.org/4273-sch.htm |editor1-last=Kingsley |editor1-first=Stuart A. |editor1-link=Stuart Kingsley |editor2-last=Bhathal |editor2-first=Ragbir |editor2-link=Ragbir Bhathal |volume=4273 |publisher=] |location=Bellingham, WA |isbn=0-8194-3951-7 |lccn=2001279159 |doi=10.1117/12.435366 |accessdate=2015-06-09 |ref=harv}} Proceedings of the SPIE held at San Jose, CA, 22–24 January 2001 | |||
* {{cite book |last=Knauth |first=L. Paul |year=1992 |chapter=Origin and diagenesis of cherts: An isotopic perspective |editor1-last=Clauer |editor1-first=Norbert |editor2-last=Chaudhuri |editor2-first=Sambhu |title=Isotopic Signatures and Sedimentary Records |series=Lecture Notes in Earth Sciences |volume=43 |location=Berlin; New York |publisher=Springer-Verlag |doi=10.1007/BFb0009863 |isbn=3-540-55828-4 |issn=0930-0317 |lccn=92025372 |oclc=26262469 |ref=harv}} | |||
* {{cite book |last=Lane |first=Nick |authorlink=Nick Lane |year=2009 |title=Life Ascending: The 10 Great Inventions of Evolution |edition=1st American |location=New York |publisher=W. W. Norton & Company |isbn=978-0-393-06596-1 |lccn=2009005046 |oclc=286488326 |ref=harv}} | |||
* {{cite book |last=Lankenau |first=Dirk-Henner |year=2011 |chapter=Two RNA Worlds: Toward the Origin of Replication, Genes, Recombination and Repair |editor1-last=Egel |editor1-first=Richard |editor2-last=Lankenau |editor2-first=Dirk-Henner |editor3-last=Mulkidjanian, |editor3-first=Armen Y. |title=Origins of Life: The Primal Self-Organization |location=Heidelberg |publisher=Springer |doi=10.1007/978-3-642-21625-1 |isbn=978-3-642-21624-4 |lccn=2011935879 |oclc=733245537 |ref=harv}} | |||
* {{cite book |last=Lennox |first=James G. |authorlink=James G. Lennox |year=2001 |title=Aristotle's Philosophy of Biology: Studies in the Origins of Life Science |series=Cambridge Studies in Philosophy and Biology |location=Cambridge, UK; New York |publisher=Cambridge University Press |isbn=0-521-65976-0 |lccn=00026070 |ref=harv}} | |||
* {{cite book |last=McKinney |first=Michael L. |year=1997 |chapter=How do rare species avoid extinction? A paleontological view |editor1-last=Kunin |editor1-first=William E. |editor2-last=Gaston |editor2-first=Kevin J. |title=The Biology of Rarity: Causes and consequences of rare—common differences |edition=1st |location=London; New York |publisher=] |isbn=0-412-63380-9 |lccn=96071014 |oclc=36442106 |ref=harv}} | |||
* {{cite journal |last=Michod |first=Richard E. |year=1999 |title=Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality |location=Princeton, NJ |publisher=] |isbn=0-691-02699-8 |lccn=98004166 |oclc=38948118 |ref=harv}} | |||
* {{cite book |last1=Miller |first1=G. Tyler |last2=Spoolman |first2=Scott E. |year=2012 |title=Environmental Science |edition=14th |location=Belmont, CA |publisher=] |isbn=978-1-111-98893-7 |lccn=2011934330 |oclc=741539226 |ref=harv}} | |||
* {{cite book |last=Oparin |first=A. I. |authorlink=Alexander Oparin |year=1953 |origyear=Originally published 1938; New York: ] |title=The Origin of Life |others=Translation and new introduction by Sergius Morgulis |edition=2nd |location=Mineola, NY |publisher=Dover Publications |isbn=0-486-49522-1 |lccn=53010161 |ref=harv}} | |||
* {{cite book |last=Orgel |first=Leslie E. |authorlink=Leslie Orgel |year=1987 |chapter=Evolution of the Genetic Apparatus: A Review |title=Evolution of Catalytic Function |series=Cold Spring Harbor Symposia on Quantitative Biology |volume=52 |location=Cold Spring Harbor, NY |publisher=Cold Spring Harbor Laboratory Press |doi=10.1101/SQB.1987.052.01.004 |isbn=0-87969-054-2 |oclc=19850881 |ref=harv}} "Proceedings of a symposium held at Cold Spring Harbor Laboratory in 1987" | |||
* {{cite book |last1=Raven |first1=Peter H. |authorlink1=Peter H. Raven |last2=Johnson |first2=George B. |authorlink2=George B. Johnson |year=2002 |title=Biology |edition=6th |location=Boston, MA |publisher=] |isbn=0-07-112261-3 |lccn=2001030052 |oclc=45806501 |ref=harv}} | |||
* {{cite book |last=Ross |first=Alexander |authorlink=Alexander Ross (writer) |year=1652 |title=Arcana Microcosmi |url=http://penelope.uchicago.edu/ross/ross210.html |volume=Book II |location=London |accessdate=2015-07-07 |ref=harv}} | |||
* {{cite book |last=Shapiro |first=Robert |authorlink=Robert Shapiro (chemist) |year=1987 |title=Origins: A Skeptic's Guide to the Creation of Life on Earth |location=Toronto; New York |publisher=] |isbn=0-553-34355-6 |ref=harv}} | |||
* {{cite conference |url=http://www.rbsp.info/rbs/PDF/spie05-telos.pdf |title=Historical Development of the Distinction between Bio- and Abiogenesis |last=Sheldon |first=Robert B. |date=22 September 2005 |conference=Astrobiology and Planetary Missions |conference-url=http://spie.org/Publications/Proceedings/Volume/5906?origin_id=x4323&start_year=2005&end_year=2005 |editor1-last=Hoover |editor1-first=Richard B. |editor1-link=Richard B. Hoover |editor2-last=Levin |editor2-first=Gilbert V. |editor2-link=Gilbert Levin |editor3-last=Rozanov |editor3-first=Alexei Y. |editor4-last=Gladstone |editor4-first=G. Randall |volume=5906 |publisher=SPIE |location=Bellingham, WA |format=PDF |isbn=978-0-8194-5911-4 |lccn=2005284378 |doi=10.1117/12.663480 |accessdate=2015-04-13 |ref=harv}} Proceedings of the SPIE held at San Diego, CA, 31 July–2 August 2005 | |||
* {{cite book |last1=Stearns |first1=Beverly Peterson |last2=Stearns |first2=Stephen C. |authorlink2=Stephen C. Stearns |year=1999 |title=Watching, from the Edge of Extinction |location=New Haven, CT |publisher=] |isbn=0-300-07606-1 |lccn=98034087 |oclc=47011675 |ref=harv}} | |||
* {{cite book |last=Tyndall |first=John |authorlink=John Tyndall |year=1905 |origyear=Originally published 1871; London; New York: ]s, Green & Co.; ] |title=Fragments of Science |url=https://archive.org/details/fragmenoscien02tyndrich |volume=2 |edition=6th |location=New York |publisher=] |oclc=726998155 |accessdate=2015-06-06 |ref=harv}} | |||
* {{cite book |last=Vartanian |first=Aram |year=1973 |chapter=Spontaneous Generation |chapterurl=http://xtf.lib.virginia.edu/xtf/view?docId=DicHist/uvaGenText/tei/DicHist4.xml;chunk.id=dv4-39;toc.depth=1;toc.id=dv4-39;brand=default |editor-last=Wiener |editor-first=Philip P. |title=Dictionary of the History of Ideas |volume=IV |location=New York |publisher=] |isbn=0-684-13293-1 |lccn=72007943 |accessdate=2015-06-05 |ref=harv}} | |||
* {{cite book |last1=Voet |first1=Donald |authorlink1=Donald Voet |last2=Voet |first2=Judith G. |authorlink2=Judith G. Voet |year=2004 |title=Biochemistry |volume=1 |edition=3rd |location=New York |publisher=John Wiley & Sons |isbn=0-471-19350-X |lccn=2003269978 |ref=harv}} | |||
* {{cite book |editor-last=Woodward |editor-first=Robert J. |year=1969 |title=Our Amazing World of Nature: Its Marvels & Mysteries |location=Pleasantville, NY |publisher=] |isbn=0-340-13000-8 |lccn=69010418 |ref=harv}} | |||
* {{cite book |last=Yarus |first=Michael |year=2010 |title=Life from an RNA World: The Ancestor Within |location=Cambridge, MA |publisher=] |isbn=978-0-674-05075-4 |lccn=2009044011 |ref=harv}} | |||
{{Refend}} | |||
== |
== Sources == | ||
{{Refbegin|30em}} | |||
{{Refbegin|colwidth=30em}} | |||
* {{cite journal |last1=Arrhenius |first1=Gustaf O. |last2=Sales |first2=Brian C. |last3=Mojzsis |first3=Stephen J. |last4=Lee |first4=T. |display-authors=3 |date=21 August 1997 |title=Entropy and Charge in Molecular Evolution—the Case of Phosphate |url=http://isotope.colorado.edu/~mojzsis/1997_Arrhenius_JTB.pdf |format=PDF |journal=] |location=Amsterdam, the Netherlands |publisher=] |volume=187 |issue=4 |pages=503–522 |doi=10.1006/jtbi.1996.0385 |issn=0022-5193 |pmid=9299295}} | |||
* {{cite book |last=Altermann |first=Wladyslaw |year=2009 |chapter=Introduction: A Roadmap to Fata Morgana? |editor1-last=Seckbach |editor1-first=Joseph |editor2-last=Walsh |editor2-first=Maud |title=From Fossils to Astrobiology: Records of Life on Earth and the Search for Extraterrestrial Biosignatures |series=Cellular Origin, Life in Extreme Habitats and Astrobiology |volume=12 |location=Dordrecht, the Netherlands; London |publisher=Springer |isbn=978-1-4020-8836-0}} | |||
* {{cite journal |last=Cavalier-Smith |first=Thomas |authorlink=Thomas Cavalier-Smith |date=June 2006 |title=Cell evolution and Earth history: stasis and revolution |journal=] |location=London |publisher=] |volume=361 |issue=1470 |pages=969–1006 |doi=10.1098/rstb.2006.1842 |issn=0962-8436 |pmid=16754610 |pmc=1578732}} | |||
* {{cite book |last1=Bada |first1=Jeffrey L. |author1-link=Jeffrey L. Bada |last2=Lazcano |first2=Antonio |author2-link=Antonio Lazcano |year=2009 |chapter=The Origin of Life |editor1-last=Ruse |editor1-first=Michael |editor1-link=Michael Ruse |editor2-last=Travis |editor2-first=Joseph |editor2-link=Joseph Travis |title=Evolution: The First Four Billion Years |others=Foreword by ] |location=Cambridge |publisher=] |isbn=978-0-674-03175-3 |oclc=225874308 |chapter-url=https://archive.org/details/evolutionfirstfo00mich }} | |||
* {{cite book |last=de Duve |first=Christian |authorlink=Christian de Duve |year=1995 |title=Vital Dust: Life As A Cosmic Imperative |edition=1st |location=New York |publisher=] |isbn=0-465-09044-3 |lccn=94012964 |oclc=30624716 |ref=harv}} | |||
* {{cite book |last1=Barton |first1=Nicholas H. |author-link1=Nick Barton |last2=Briggs |first2=Derek E.G. |author-link2=Derek Briggs |last3=Eisen |first3=Jonathan A. |author-link3=Jonathan Eisen |last4=Goldstein |first4=David B. |last5=Patel |first5=Nipan H. |display-authors=3 |year=2007 |title=Evolution |location=Cold Spring Harbor, New York |publisher=Cold Spring Harbor Laboratory Press |isbn=978-0-87969-684-9 |oclc=86090399}} | |||
* {{cite journal |last1=Fernando |first1=Chrisantha T. |last2=Rowe |first2=Jonathan |date=7 July 2007 |title=Natural selection in chemical evolution |journal=Journal of Theoretical Biology |location=Amsterdam, the Netherlands |volume=247 |issue=1 |pages=152–167 |doi=10.1016/j.jtbi.2007.01.028 |issn=0022-5193 |pmid=17399743}} | |||
* {{cite book |last= |
* {{cite book |last=Bastian |first=H. Charlton |author-link=Henry Charlton Bastian |year=1871 |title=The Modes of Origin of Lowest Organisms |url=https://archive.org/details/modesoforiginofl00bast |location=London; New York |publisher=] |oclc=42959303 |access-date=2015-06-06 }} | ||
* {{cite book |last= |
* {{cite book |last=Bernal |first=J. D. |author-link=John Desmond Bernal |year=1951 |title=The Physical Basis of Life |location=London |publisher=] & Kegan Paul}} | ||
* {{cite book |last=Bernal |first=J. D. |year=1960 |chapter=The Problem of Stages in Biopoesis |editor-last=Florkin |editor-first=M. |editor-link=Marcel Florkin |title=Aspects of the Origin of Life |chapter-url=https://archive.org/details/aspectsoforigino0000flor |chapter-url-access=registration |series=International Series of Monographs on Pure and Applied Biology |location=Oxford, UK; New York |publisher=] |isbn=978-1-4831-3587-8 |ref=none }} | |||
* {{cite journal |last=Horgan |first=John |authorlink=John Horgan (journalist) |title=In the Beginning... |date=February 1991 |journal=] |location=Stuttgart |publisher=] |volume=264 |issue=2 |pages=116–125 |doi=10.1038/scientificamerican0291-116 |issn=0036-8733}} | |||
* {{cite book |last=Bernal |first=J. D. |year=1967 |orig-date=Reprinted work by ] originally published 1924; Moscow: ] |title=The Origin of Life |url=https://archive.org/details/originoflife0000bern |url-access=registration |series=The Weidenfeld and Nicolson Natural History |others=Translation of Oparin by Ann Synge |location=London |publisher=] }} | |||
* {{cite journal |last1=Ignatov |first1=Ignat |last2=Mosin |first2=Oleg V. |year=2013 |title=Modeling of Possible Processes for Origin of Life and Living Matter in Hot Mineral and Seawater with Deuterium |url=http://www.iiste.org/Journals/index.php/JEES/article/view/9903 |journal=Journal of Environment and Earth Science |location=New York |publisher=International Institute for Science, Technology and Education |volume=3 |issue=14|pages=103–118 |issn=2224-3216 |accessdate=2015-06-29}} | |||
* {{cite book |editor1-last=Bock |editor1-first=Gregory R. |editor2-last=Goode |editor2-first=Jamie A. |year=1996 |title=Evolution of Hydrothermal Ecosystems on Earth (and Mars?) |series=Ciba Foundation Symposium |volume=202 |location=Chichester, UK; New York |publisher=] |isbn=978-0-471-96509-1}} | |||
* {{cite journal |last=Jortner |first=Joshua |date=October 2006 |authorlink=Joshua Jortner |title=Conditions for the emergence of life on the early Earth: summary and reflections |journal=Philosophical Transactions of the Royal Society B |location=London |publisher=Royal Society |volume=361 |issue=1474 |pages=1877–1891 |doi=10.1098/rstb.2006.1909 |issn=0962-8436 |pmid=17008225 |pmc=1664691}} | |||
* {{cite |
* {{cite book |last=Bondeson |first=Jan |author-link=Jan Bondeson |year=1999 |title=The Feejee Mermaid and Other Essays in Natural and Unnatural History |location=Ithaca, NY |publisher=] |isbn=978-0-8014-3609-3}} | ||
* {{cite book |last= |
* {{cite book |last=Bryson |first=Bill |author-link=Bill Bryson |year=2004 |title=A Short History of Nearly Everything |location=London |publisher=] |isbn=978-0-552-99704-1 |oclc=55589795 |title-link=A Short History of Nearly Everything}} | ||
* {{cite book |last= |
* {{cite book |last=Calvin |first=Melvin |author-link=Melvin Calvin |year=1969 |title=Chemical Evolution: Molecular Evolution Towards the Origin of Living Systems on the Earth and Elsewhere |url=https://archive.org/details/chemicalevolutio0000calv |url-access=registration |location=Oxford, UK |publisher=] |isbn=978-0-19-855342-7 |oclc=25220 }} | ||
* {{cite book |last1= |
* {{cite book |last1=Chaichian |first1=Masud |last2=Rojas |first2=Hugo Perez |last3=Tureanu |first3=Anca |title=Basic Concepts in Physics |year=2014 |chapter=Physics and Life |series=Undergraduate Lecture Notes in Physics |pages=353–364 |location=Berlin; Heidelberg |publisher=] |doi=10.1007/978-3-642-19598-3_12 |isbn=978-3-642-19597-6 |s2cid=115247432 |oclc=900189038}} | ||
* {{cite book |last= |
* {{cite book |last=Chang |first=Thomas Ming Swi |author-link=Thomas Chang |year=2007 |title=Artificial Cells: Biotechnology, Nanomedicine, Regenerative Medicine, Blood Substitutes, Bioencapsulation, and Cell/Stem Cell Therapy |series=Regenerative Medicine, Artificial Cells and Nanomedicine |volume=1 |location=Hackensack, New Jersey |publisher=] |isbn=978-981-270-576-1 |oclc=173522612}} | ||
* {{cite book |last=Dalrymple |first=G. Brent |author-link=Brent Dalrymple |year=2001 |chapter=The age of the Earth in the twentieth century: a problem (mostly) solved |editor1-last=Lewis |editor1-first=C.L.E. |editor2-last=Knell |editor2-first=S.J. |title=The Age of the Earth: from 4004 BC to AD 2002 |series=Geological Society Special Publication |location=London |publisher=] |volume=190 |issue=1 |pages=205–221 |bibcode=2001GSLSP.190..205D |doi=10.1144/gsl.sp.2001.190.01.14 |isbn=978-1-86239-093-5 |s2cid=130092094 |oclc=48570033}} | |||
* ]: {{cite web |url=http://astrobiology.ucla.edu/pages/res3b.html |title=Earth's Early Environment and Life: When did Earth become suitable for habitation? |last1=Harrison |first1=T. Mark |last2=McKeegan |first2=Kevin D. |last3=Mojzsis |first3=Stephen J. |archiveurl=https://web.archive.org/web/20120217040600/http://astrobiology.ucla.edu/pages/res3b.html |archivedate=2012-02-17 |accessdate=2015-06-30}} | |||
* {{cite book |last=Darwin |first=Charles |author-link=Charles Darwin |year=1887 |editor-last=Darwin |editor-first=Francis |editor-link=Francis Darwin |title=The Life and Letters of Charles Darwin, Including an Autobiographical Chapter |volume=3 |edition=3rd |location=London |publisher=] |oclc=834491774 |title-link=The Life and Letters of Charles Darwin}} | |||
* NASA Specialized Center of Research and Training in Exobiology: {{cite web |url=http://exobio.ucsd.edu/arrhenius.htm |title=Arrhenius |last=Arrhenius |first=Gustaf O. |date=11 September 2002 |archiveurl=https://web.archive.org/web/20071221000659/http://exobio.ucsd.edu/arrhenius.htm |archivedate=2007-12-21 |accessdate=2015-06-30}} | |||
* {{cite book |last=Davies |first=Paul |author-link=Paul Davies |year=1999 |title=The Fifth Miracle: The Search for the Origin of Life |location=London |publisher=] |isbn=978-0-14-028226-9}} | |||
* {{cite web |url=http://www.whatislife.com/about.html |title=The physico-chemical basis of life |website=What is Life |publisher=Lukas K. Buehler |location=Spring Valley, CA |accessdate=27 October 2005}} | |||
* {{cite book |last=Dobell |first=Clifford |author-link=Clifford Dobell |title=Antony van Leeuwenhoek and His 'Little Animals' |url=https://archive.org/details/antonyvanleeuwen00clif |url-access=registration |year=1960 |orig-date=Originally published 1932; New York: ] |location=New York |publisher=] }} | |||
* {{cite journal |last1=Pitsch |first1=Stefan |last2=Krishnamurthy |first2=Ramanarayanan |last3=Arrhenius |first3=Gustaf O. |date=6 September 2000 |title=Concentration of Simple Aldehydes by Sulfite-Containing Double-Layer Hydroxide Minerals: Implications for Biopoesis |journal=] |location=Hoboken, NJ |publisher=] |volume=83 |issue=9 |pages=2398–2411 |doi=10.1002/1522-2675(20000906)83:9<2398::AID-HLCA2398>3.0.CO;2-5 |issn=0018-019X |pmid=11543578}} | |||
* {{cite book |last=Dyson |first=Freeman |author-link=Freeman Dyson |year=1999 |title=Origins of Life |edition=Revised |location=Cambridge, UK; New York |publisher=] |isbn=978-0-521-62668-2 |ref=none}} | |||
* {{cite journal |last1=Pons |first1=Marie-Laure |last2=Quitté |first2=Ghylaine |last3=Fujii |first3=Toshiyuki |last4=Rosing |first4=Minik T. |last5=Reynard |first5=Bruno |last6=Moynier |first6=Frederic |last7=Douchet |first7=Chantal |last8=Albarède |first8=Francis |display-authors=3 |date=25 October 2011 |title=Early Archean Serpentine Mud Volcanoes at Isua, Greenland, as a Niche for Early Life |journal=] |location=Washington, D.C. |publisher=] |volume=108 |issue=43 |pages=17639–17643 |bibcode=2011PNAS..10817639P |doi=10.1073/pnas.1108061108 |issn=0027-8424 |pmc=3203773 |pmid=22006301}} | |||
* {{cite book |last=Fesenkov |first=V. G. |author-link=Vasily Fesenkov |year=1959 |chapter=Some Considerations about the Primaeval State of the Earth |editor1-last=Oparin |editor1-first=A. I. |editor1-link=Alexander Oparin |editor2-last=Braunshtein |editor2-first=A.E. |editor3-last=Pasynskii |editor3-first=A. G. |editor4-last=Pavlovskaya |editor4-first=T. E. |display-editors=1 |title=The Origin of Life on the Earth |chapter-url=https://archive.org/details/proceedings00inte |series=I.U.B. Symposium Series |volume=1 |others=Edited for the ] by Frank Clark and ] |edition=English-French-German |location=London; New York |publisher=] |isbn=978-1-4832-2240-0 }} International Symposium on the Origin of Life on the Earth (held at Moscow, 19–24 August 1957) | |||
* {{cite book |last=Pross |first=Addy |year=2012 |title=What is Life?: How Chemistry Becomes Biology |edition=1st |location=Oxford, UK |publisher=Oxford University Press |isbn=978-0-19-964101-7 |lccn=2012538842 |oclc=812020290 |ref=harv}} | |||
* {{cite book |last=Hazen |first=Robert M. |author-link=Robert Hazen |title=Genesis: The Scientific Quest for Life's Origin |year=2005 |location=Washington, DC |publisher=] |isbn=978-0-309-09432-0 |oclc=60321860 |url-access=registration |url=https://archive.org/details/genesisscientifi0000haze }} | |||
* {{cite book |last1=Roy |first1=Debjani |last2=Schleyer |first2=Paul von Ragué |authorlink2=Paul von Ragué Schleyer |year=2010 |chapter=Chemical Origin of Life: How do Five HCN Molecules Combine to form Adenine under Prebiotic and Interstellar Conditions |editor-last=Matta |editor-first=Chérif F. |title=Quantum Biochemistry |location=Weinheim, Germany |publisher=] |isbn=978-3-527-62921-3 |doi=10.1002/9783527629213.ch6 |lccn=2011499476 |oclc=905973537 |ref=harv}} | |||
* {{cite book |last=Huxley |first=Thomas Henry |author-link=Thomas Henry Huxley |year=1968 |orig-date=1897 |chapter=VIII Biogenesis and Abiogenesis |chapter-url=http://aleph0.clarku.edu/huxley/CE8/B-Ab.html |title=Discourses, Biological and Geological |series=Collected Essays |volume=VIII |edition=Reprint |location=New York |publisher=] |oclc=476737627 |access-date=19 May 2014 |archive-date=7 May 2015 |archive-url=https://web.archive.org/web/20150507041155/http://aleph0.clarku.edu/huxley/CE8/B-Ab.html |url-status=live }} | |||
* {{cite journal |last1=Russell |first1=Michael J. |last2=Hall |first2=A. J. |last3=Cairns-Smith |first3=Alexander Graham |authorlink3=Graham Cairns-Smith |last4=Braterman |first4=Paul S. |display-authors=3 |date=10 November 1988 |title=Submarine hot springs and the origin of life |journal=] |location=London |publisher=] |volume=336 |issue=6195 |page=117 |bibcode=1988Natur.336..117R |doi=10.1038/336117a0 |issn=0028-0836 |pmid=11536607}} | |||
* {{cite conference |url=http://www.panspermia.org/oseti.htm |title=Panspermia Asks New Questions |first=Brig |last=Klyce |date=22 January 2001 |conference=The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum III |conference-url=http://www.coseti.org/4273-sch.htm |editor1-last=Kingsley |editor1-first=Stuart A. |editor1-link=Stuart Kingsley |editor2-last=Bhathal |editor2-first=Ragbir |editor2-link=Ragbir Bhathal |volume=4273 |publisher=] |location=Bellingham, WA |isbn=0-8194-3951-7 |doi=10.1117/12.435366 |access-date=2015-06-09 |archive-date=3 September 2013 |archive-url=https://web.archive.org/web/20130903122724/http://panspermia.org/oseti.htm |url-status=live }} Proceedings of the SPIE held at San Jose, California, 22–24 January 2001 | |||
* {{cite journal |last1=Shock |first1=Everett L. |date=25 October 1997 |title=High-temperature life without photosynthesis as a model for Mars |url=http://www.igpp.ucla.edu/public/mkivelso/refs/PUBLICATIONS/shcok%20hiT%20life%20Mars7JE01087.pdf |format=PDF |journal=Journal of Geophysical Research |location=Washington, D.C. |publisher=] |volume=102 |issue=E10 |pages=23687–23694 |bibcode=1997JGR...10223687S |doi=10.1029/97je01087 |issn=0148-0227}} | |||
* {{cite book |last=Lane |first=Nick |author-link=Nick Lane |year=2009 |title=Life Ascending: The 10 Great Inventions of Evolution |edition=1st American |location=New York |publisher=W.W. Norton & Company |isbn=978-0-393-06596-1 |oclc=286488326 |url-access=registration |url=https://archive.org/details/lifeascendingten0000lane }} | |||
* {{cite book |last=Lennox |first=James G. |author-link=James G. Lennox |year=2001 |title=Aristotle's Philosophy of Biology: Studies in the Origins of Life Science |series=Cambridge Studies in Philosophy and Biology |location=Cambridge, UK; New York |publisher=Cambridge University Press |isbn=978-0-521-65976-5}} | |||
* {{cite book |last=Michod |first=Richard E. |year=1999 |title=Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality |location=Princeton, New Jersey |publisher=] |isbn=978-0-691-02699-2 |oclc=38948118 |url=https://archive.org/details/darwiniandynamic00mich }} | |||
* {{cite book |last=Oparin |first=A.I. |author-link=Alexander Oparin |year=1953 |orig-date=Originally published 1938; New York: ] |title=The Origin of Life |others=Translation and new introduction by Sergius Morgulis |edition=2nd |location=Mineola, NY |publisher=Dover Publications |isbn=978-0-486-49522-4}} | |||
* {{cite book |last=Ross |first=Alexander |author-link=Alexander Ross (writer) |year=1652 |title=Arcana Microcosmi |url=http://penelope.uchicago.edu/ross/ross210.html |volume=II |location=London |oclc=614453394 |access-date=14 July 2015 |archive-date=24 February 2024 |archive-url=https://web.archive.org/web/20240224160230/http://penelope.uchicago.edu/ross/ross210.html |url-status=live }} | |||
* {{cite conference |chapter-url=http://www.rbsp.info/rbs/PDF/spie05-telos.pdf |chapter=Historical Development of the Distinction between Bio- and Abiogenesis |last=Sheldon |first=Robert B. |title=Astrobiology and Planetary Missions |date=22 September 2005 |conference=Astrobiology and Planetary Missions |conference-url=http://spie.org/Publications/Proceedings/Volume/5906?origin_id=x4323&start_year=2005&end_year=2005 |editor1-last=Hoover |editor1-first=Richard B. |editor1-link=Richard B. Hoover |editor2-last=Levin |editor2-first=Gilbert V. |editor2-link=Gilbert Levin |editor3-last=Rozanov |editor3-first=Alexei Y. |editor4-last=Gladstone |editor4-first=G. Randall |volume=5906 |pages=59061I |publisher=SPIE |location=Bellingham, WA |isbn=978-0-8194-5911-4 |doi=10.1117/12.663480 |access-date=13 April 2015 |archive-date=13 April 2015 |archive-url=https://web.archive.org/web/20150413020306/http://www.rbsp.info/rbs/PDF/spie05-telos.pdf |url-status=live }} Proceedings of the SPIE held at San Diego, California, 31 July–2 August 2005 | |||
* {{cite book |last=Tyndall |first=John |author-link=John Tyndall |year=1905 |orig-date=Originally published 1871; London; New York: ]s, Green & Co.; ] |title=Fragments of Science |url=https://archive.org/details/fragmenoscien02tyndrich |volume=2 |edition=6th |location=New York |publisher=] |oclc=726998155 }} | |||
* {{cite book |last1=Voet |first1=Donald |author-link1=Donald Voet |last2=Voet |first2=Judith G. |author-link2=Judith G. Voet |year=2004 |title=Biochemistry |volume=1 |edition=3rd |location=New York |publisher=John Wiley & Sons |isbn=978-0-471-19350-0}} | |||
* {{cite book |last=Yarus |first=Michael |author-link=Michael Yarus|year=2010 |title=Life from an RNA World: The Ancestor Within |location=Cambridge, Massachusetts |publisher=] |isbn=978-0-674-05075-4 |page=287}} | |||
{{Refend}} | {{Refend}} | ||
== External links == | == External links == | ||
{{Spoken Misplaced Pages-4|2012-06-13|WIKIPEDIA ARTICLE - ABIOGENESIS (Part 01).ogg|WIKIPEDIA ARTICLE - ABIOGENESIS (Part 02).ogg|WIKIPEDIA ARTICLE - ABIOGENESIS (Part 03).ogg|WIKIPEDIA ARTICLE - ABIOGENESIS (Part 04).ogg}} | |||
* {{cite web |url=http://exploringorigins.org/ |title=Exploring Life's Origins: A Virtual Exhibit |website=Exploring Life's Origins: A Virtual Exhibit |publisher=] |location=Arlington County, VA |accessdate=2015-07-02}} | |||
* {{cite journal |last=Fields |first=Helen |date=October 2010 |title=The Origins of Life |url=http://www.smithsonianmag.com/science-nature/the-origins-of-life-60437133/?all |journal=] |location=Washington, D.C. |publisher=] |issn=0037-7333 |accessdate=2015-07-02}} | |||
* {{cite journal |last=Fox |first=Douglas |date=28 March 2007 |title=Primordial Soup's On: Scientists Repeat Evolution's Most Famous Experiment |url=http://www.scientificamerican.com/article/primordial-soup-urey-miller-evolution-experiment-repeated/ |journal=] |location=Stuttgart |publisher=] |issn=0036-8733 |accessdate=2015-07-02}} | |||
* {{cite web |url=http://www.gla.ac.uk/projects/originoflife/ |title=The Geochemical Origins of Life by Michael J. Russell & Allan J. Hall |date=13 December 2008 |publisher=] |location=Glasgow, Scotland |accessdate=2015-07-02}} | |||
* {{cite journal |last=Kauffman |first=Stuart |authorlink=Stuart Kauffman |date=8 August 1996 |title=Even peptides do it |url=http://www.santafe.edu/sfi/People/kauffman/sak-peptides.html |journal=] |location=London |publisher=] |volume=382 |issue=6591 |pages=496–497 |bibcode=1996Natur.382..496K |doi=10.1038/382496a0 |issn=0028-0836 |pmid=8700218 |archiveurl=https://web.archive.org/web/20061015000732/http://www.santafe.edu/sfi/People/kauffman/sak-peptides.html |archivedate=2006-10-15 |accessdate=2015-07-02}} | |||
* {{cite web |url=http://www.earthfacts.com/evolution-and-life/howlifebeganearth/ |title=How life began on Earth |last=Malory |first=Marcia |website=Earth Facts |accessdate=2015-07-02}} | |||
* {{cite journal |last1=Nowak |authorlink1=Martin Nowak |first1=Martin A. |last2=Ohtsuki |first2=Hisashi |date=30 September 2008 |title=Prevolutionary dynamics and the origin of evolution |url=http://www.pnas.org/content/early/2008/09/11/0806714105.full.pdf |format=PDF |journal=] |location=Washington, D.C. |publisher=] |volume=105 |issue=39 |pages=14924–14927 |bibcode=2008PNAS..10514924N |doi=10.1073/pnas.0806714105 |issn=0027-8424 |pmc=2567469 |pmid=18791073}} | |||
* {{cite web |url=http://pokey.arc.nasa.gov/~astrochm/LifeImplications.html |title=Possible Connections Between Interstellar Chemistry and the Origin of Life on the Earth |website=Space Science and Astrobiology at Ames |publisher=] |archiveurl=https://web.archive.org/web/20090731102920/http://pokey.arc.nasa.gov/~astrochm/LifeImplications.html |archivedate=2009-07-31 |accessdate=2015-07-02}} | |||
* {{cite web |url=http://origins.harvard.edu/pages/research-spotlight-jack-szostak |title=Research Spotlight: Jack Szostak: Making Life from Scratch |website=Origins of Life Initiative |publisher=] |location=Cambridge, MA |accessdate=2015-07-02}} | |||
* {{cite news |last=Schirber |first=Michael |date=9 June 2006 |title=How Life Began: New Research Suggests Simple Approach |url=http://www.livescience.com/10531-life-began-research-suggests-simple-approach.html |work=] |location=Ogden, UT |publisher=] |accessdate=2015-07-02}} | |||
* {{cite web |url=http://nai.arc.nasa.gov/news_stories/news_detail.cfm?ID=207 |title=Scientists Find Clues That Life Began in Deep Space |date=30 January 2001 |website=] |publisher=NASA |location=Mountain View, CA |archiveurl=https://web.archive.org/web/20130429151151/http://nai.arc.nasa.gov/news_stories/news_detail.cfm?ID=207 |archivedate=2013-04-29 |accessdate=2015-07-02}} | |||
* {{cite news |date=16 May 2008 |title=Simple Artificial Cell Created From Scratch To Study Cell Complexity |url=http://www.sciencedaily.com/releases/2008/05/080515171023.htm |work=] |location=Rockville, MD |publisher=ScienceDaily, LLC |accessdate=2015-07-02}} Post is reprinted from materials provided by ]. | |||
* {{cite web |last=Singer |first=Emily |title=Chemists Invent New Letters for Nature’s Genetic Alphabet |url=http://www.wired.com/2015/07/chemists-invent-new-letters-natures-genetic-alphabet |date=19 July 2015 |work=] |publisher=] |location=New York |accessdate=2015-07-20}} | |||
* {{cite journal |last=Swaminathan |first=Nikhil |date=10 June 2008 |title=Scientists Close to Reconstructing First Living Cell |url=http://www.scientificamerican.com/article/scientists-close-to-recon/ |journal=Scientific American |location=Stuttgart |publisher=Georg von Holtzbrinck Publishing Group |type=News |issn=0036-8733 |accessdate=2015-07-02}} | |||
* {{cite journal |last1=Vasas |first1=Vera |last2=Fernando |first2=Chrisantha |last3=Santos |first3=Mauro |last4=Kauffman |first4=Stuart |authorlink4=Stuart Kauffman |last5=Szathmáry |first5=Eörs |authorlink5=Eörs Szathmáry |display-authors=3 |date=5 January 2012 |title=Evolution before genes |url=http://www.biologydirect.com/content/pdf/1745-6150-7-1.pdf |format=PDF |journal=] |location=London |publisher=] |volume=7 |page=1 |doi=10.1186/1745-6150-7-1 |issn=1745-6150}} | |||
* {{cite journal |last=Zlobin |first=Andrei E. |year=2013 |title=Tunguska similar impacts and origin of life |url=http://web.snauka.ru/en/issues/2013/12/30018 |journal=Modern Scientific Researches and Innovations |location=Moscow |publisher=International Centre of Science and Innovations Ltd. |number=12 |accessdate=2015-07-02}} | |||
* {{cite journal |last=Zlobin |first=Andrei E. |year=2014 |title=Symmetry infringement in mathematical metrics of hydrogen atom as illustration of ideas by V.I.Vernadsky concerning origin of life and biosphere |url=http://www.azorcord.orc.ru/abstract.pdf |format=PDF |journal=Acta Naturae |location=Moscow |publisher=Park Media Ltd. |issue=Special Issue 1 |page=48 |issn=2075-8251 |accessdate=2015-07-02}} | |||
{{Library resources box}} | |||
* {{cite AV media |last=Hazen |first=Robert M. |authorlink=Robert Hazen |date=29 April 2014 |title=The Origins of Life |medium=] |url=https://webcast.stsci.edu/webcast/detail.xhtml?talkid=4006 |accessdate=2015-07-03 |location=Baltimore, MD |publisher=]}} — A 2014 Spring Symposium webcast (video; 38 m) | |||
* – Adam Mann (]; 14 April 2021) | |||
* {{YouTube|id=mYW7qCP6-z8|title="The Origin of Life"|link=yes}} — A ] Discourse lecture given by ] in 1995 (video; 58 m) | |||
* {{Webarchive|url=https://web.archive.org/web/20230408001731/https://exploringorigins.org/ |date=8 April 2023 }} a virtual exhibit at the ] | |||
* {{YouTube|id=GNjuz6MO0eU|title="Space Experts Discuss the Search for Life in the Universe at NASA"|link=no}} — Panel discussion at NASA headquarters on 14 July 2014 (video; 87 m) | |||
* – Marcia Malory (Earth Facts; 2015) | |||
* – ] et al. (]; 2004) | |||
* – Essay by ] (1996) | |||
{{Origin of life}} | {{Origin of life}} | ||
{{ |
{{Nature}} | ||
{{ |
{{Branches of biology}} | ||
{{BranchesofChemistry}} | |||
{{Molecules detected in outer space}} | {{Molecules detected in outer space}} | ||
{{Nature nav}} | |||
{{Portal bar|Evolutionary biology}} | |||
{{Authority control}} | {{Authority control}} | ||
] | |||
] | ] | ||
] | ] | ||
] | ] | ||
] | ] | ||
] | |||
] |
Latest revision as of 00:15, 6 January 2025
Life arising from non-living matter "Origin of life" redirects here. For non-scientific views on the origins of life, see Creation myth.
Abiogenesis is the natural process by which life arises from non-living matter, such as simple organic compounds. The prevailing scientific hypothesis is that the transition from non-living to living entities on Earth was not a single event, but a process of increasing complexity involving the formation of a habitable planet, the prebiotic synthesis of organic molecules, molecular self-replication, self-assembly, autocatalysis, and the emergence of cell membranes. The transition from non-life to life has never been observed experimentally, but many proposals have been made for different stages of the process.
The study of abiogenesis aims to determine how pre-life chemical reactions gave rise to life under conditions strikingly different from those on Earth today. It primarily uses tools from biology and chemistry, with more recent approaches attempting a synthesis of many sciences. Life functions through the specialized chemistry of carbon and water, and builds largely upon four key families of chemicals: lipids for cell membranes, carbohydrates such as sugars, amino acids for protein metabolism, and nucleic acid DNA and RNA for the mechanisms of heredity. Any successful theory of abiogenesis must explain the origins and interactions of these classes of molecules.
Many approaches to abiogenesis investigate how self-replicating molecules, or their components, came into existence. Researchers generally think that current life descends from an RNA world, although other self-replicating and self-catalyzing molecules may have preceded RNA. Other approaches ("metabolism-first" hypotheses) focus on understanding how catalysis in chemical systems on the early Earth might have provided the precursor molecules necessary for self-replication. The classic 1952 Miller–Urey experiment demonstrated that most amino acids, the chemical constituents of proteins, can be synthesized from inorganic compounds under conditions intended to replicate those of the early Earth. External sources of energy may have triggered these reactions, including lightning, radiation, atmospheric entries of micro-meteorites, and implosion of bubbles in sea and ocean waves.
While the last universal common ancestor of all modern organisms (LUCA) is thought to have been quite different from the origin of life, investigations into LUCA can guide research into early universal characteristics. A genomics approach has sought to characterize LUCA by identifying the genes shared by Archaea and Bacteria, members of the two major branches of life (with Eukaryotes included in the archaean branch in the two-domain system). It appears there are 60 proteins common to all life and 355 prokaryotic genes that trace to LUCA; their functions imply that the LUCA was anaerobic with the Wood–Ljungdahl pathway, deriving energy by chemiosmosis, and maintaining its hereditary material with DNA, the genetic code, and ribosomes. Although the LUCA lived over 4 billion years ago (4 Gya), researchers believe it was far from the first form of life. Earlier cells might have had a leaky membrane and been powered by a naturally occurring proton gradient near a deep-sea white smoker hydrothermal vent.
Earth remains the only place in the universe known to harbor life. Geochemical and fossil evidence from the Earth informs most studies of abiogenesis. The Earth was formed at 4.54 Gya, and the earliest evidence of life on Earth dates from at least 3.8 Gya from Western Australia. Some studies have suggested that fossil micro-organisms may have lived within hydrothermal vent precipitates dated 3.77 to 4.28 Gya from Quebec, soon after ocean formation 4.4 Gya during the Hadean.
Overview
Further information: AstrobiologyLife consists of reproduction with (heritable) variations. NASA defines life as "a self-sustaining chemical system capable of Darwinian evolution." Such a system is complex; the last universal common ancestor (LUCA), presumably a single-celled organism which lived some 4 billion years ago, already had hundreds of genes encoded in the DNA genetic code that is universal today. That in turn implies a suite of cellular machinery including messenger RNA, transfer RNA, and ribosomes to translate the code into proteins. Those proteins included enzymes to operate its anaerobic respiration via the Wood–Ljungdahl metabolic pathway, and a DNA polymerase to replicate its genetic material.
The challenge for abiogenesis (origin of life) researchers is to explain how such a complex and tightly interlinked system could develop by evolutionary steps, as at first sight all its parts are necessary to enable it to function. For example, a cell, whether the LUCA or in a modern organism, copies its DNA with the DNA polymerase enzyme, which is in turn produced by translating the DNA polymerase gene in the DNA. Neither the enzyme nor the DNA can be produced without the other. The evolutionary process could have involved molecular self-replication, self-assembly such as of cell membranes, and autocatalysis via RNA ribozymes. Nonetheless, the transition of non-life to life has never been observed experimentally, nor has there been a satisfactory chemical explanation.
The preconditions to the development of a living cell like the LUCA are clear enough, though disputed in their details: a habitable world is formed with a supply of minerals and liquid water. Prebiotic synthesis creates a range of simple organic compounds, which are assembled into polymers such as proteins and RNA. On the other side, the process after the LUCA is readily understood: biological evolution caused the development of a wide range of species with varied forms and biochemical capabilities. However, the derivation of living things such as LUCA from simple components is far from understood.
Although Earth remains the only place where life is known, the science of astrobiology seeks evidence of life on other planets. The 2015 NASA strategy on the origin of life aimed to solve the puzzle by identifying interactions, intermediary structures and functions, energy sources, and environmental factors that contributed to the diversity, selection, and replication of evolvable macromolecular systems, and mapping the chemical landscape of potential primordial informational polymers. The advent of polymers that could replicate, store genetic information, and exhibit properties subject to selection was, it suggested, most likely a critical step in the emergence of prebiotic chemical evolution. Those polymers derived, in turn, from simple organic compounds such as nucleobases, amino acids, and sugars that could have been formed by reactions in the environment. A successful theory of the origin of life must explain how all these chemicals came into being.
Pre-1960s conceptual history
Main article: History of research into the origin of lifeSpontaneous generation
Main article: Spontaneous generationOne ancient view of the origin of life, from Aristotle until the 19th century, is of spontaneous generation. This theory held that "lower" animals such as insects were generated by decaying organic substances, and that life arose by chance. This was questioned from the 17th century, in works like Thomas Browne's Pseudodoxia Epidemica. In 1665, Robert Hooke published the first drawings of a microorganism. In 1676, Antonie van Leeuwenhoek drew and described microorganisms, probably protozoa and bacteria. Van Leeuwenhoek disagreed with spontaneous generation, and by the 1680s convinced himself, using experiments ranging from sealed and open meat incubation and the close study of insect reproduction, that the theory was incorrect. In 1668 Francesco Redi showed that no maggots appeared in meat when flies were prevented from laying eggs. By the middle of the 19th century, spontaneous generation was considered disproven.
Panspermia
Main article: PanspermiaAnother ancient idea dating back to Anaxagoras in the 5th century BC is panspermia, the idea that life originated elsewhere in the universe and came to Earth. The modern version of panspermia holds that life may have been distributed to Earth by meteoroids, asteroids, comets and planetoids. It does not attempt to explain how life originated in itself, but shifts the origin of life on Earth to another heavenly body. The advantage is that life is not required to have formed on each planet it occurs on, but rather in a more limited set of locations, or even a single location, and then spread about the galaxy to other star systems via cometary or meteorite impact. Panspermia did not get much scientific support because it was largely used to deflect the need of an answer instead of explaining observable phenomena. Although the interest in panspermia grew when the study of meteorites found traces of organic materials in them, it is currently accepted that life started locally on Earth.
"A warm little pond": primordial soup
Main article: Primordial soupThe idea that life originated from non-living matter in slow stages appeared in Herbert Spencer's 1864–1867 book Principles of Biology, and in William Turner Thiselton-Dyer's 1879 paper "On spontaneous generation and evolution". On 1 February 1871 Charles Darwin wrote about these publications to Joseph Hooker, and set out his own speculation, suggesting that the original spark of life may have begun in a "warm little pond, with all sorts of ammonia and phosphoric salts, light, heat, electricity, &c., present, that a proteine compound was chemically formed ready to undergo still more complex changes." Darwin went on to explain that "at the present day such matter would be instantly devoured or absorbed, which would not have been the case before living creatures were formed."
Alexander Oparin in 1924 and J. B. S. Haldane in 1929 proposed that the first molecules constituting the earliest cells slowly self-organized from a primordial soup, and this theory is called the Oparin–Haldane hypothesis. Haldane suggested that the Earth's prebiotic oceans consisted of a "hot dilute soup" in which organic compounds could have formed. J. D. Bernal showed that such mechanisms could form most of the necessary molecules for life from inorganic precursors. In 1967, he suggested three "stages": the origin of biological monomers; the origin of biological polymers; and the evolution from molecules to cells.
Miller–Urey experiment
Main article: Miller–Urey experimentIn 1952, Stanley Miller and Harold Urey carried out a chemical experiment to demonstrate how organic molecules could have formed spontaneously from inorganic precursors under prebiotic conditions like those posited by the Oparin–Haldane hypothesis. It used a highly reducing (lacking oxygen) mixture of gases—methane, ammonia, and hydrogen, as well as water vapor—to form simple organic monomers such as amino acids. Bernal said of the Miller–Urey experiment that "it is not enough to explain the formation of such molecules, what is necessary, is a physical-chemical explanation of the origins of these molecules that suggests the presence of suitable sources and sinks for free energy." However, current scientific consensus describes the primitive atmosphere as weakly reducing or neutral, diminishing the amount and variety of amino acids that could be produced. The addition of iron and carbonate minerals, present in early oceans, however, produces a diverse array of amino acids. Later work has focused on two other potential reducing environments: outer space and deep-sea hydrothermal vents.
Producing a habitable Earth
Origin of life timeline | ||||||||||||||||||||||||
−13 —–−12 —–−11 —–−10 —–−9 —–−8 —–−7 —–−6 —–−5 —–−4 —–−3 —–−2 —–−1 —–0 — | Dark AgesReionizationChemical elementsOrganic compoundsWater on EarthSingle-celled lifePhotosynthesisMulticellular life |
i f e | ||||||||||||||||||||||
(billion years ago) |
Evolutionary history
Early universe with first stars
See also: Chronology of the universeSoon after the Big Bang, which occurred roughly 14 Gya, the only chemical elements present in the universe were hydrogen, helium, and lithium, the three lightest atoms in the periodic table. These elements gradually accreted and began orbiting in disks of gas and dust. Gravitational accretion of material at the hot and dense centers of these protoplanetary disks formed stars by the fusion of hydrogen. Early stars were massive and short-lived, producing all the heavier elements through stellar nucleosynthesis. Element formation through stellar nucleosynthesis proceeds to its most stable element Iron-56. Heavier elements were formed during supernovae at the end of a stars lifecycle. Carbon, currently the fourth most abundant chemical element in the universe (after hydrogen, helium, and oxygen), was formed mainly in white dwarf stars, particularly those bigger than twice the mass of the sun. As these stars reached the end of their lifecycles, they ejected these heavier elements, among them carbon and oxygen, throughout the universe. These heavier elements allowed for the formation of new objects, including rocky planets and other bodies. According to the nebular hypothesis, the formation and evolution of the Solar System began 4.6 Gya with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed.
Emergence of Earth
See also: Geological history of Earth, Circumstellar habitable zone, and Prebiotic atmosphereThe age of the Earth is 4.54 Gya as found by radiometric dating of calcium-aluminium-rich inclusions in carbonaceous chrondrite meteorites, the oldest material in the Solar System. Earth, during the Hadean eon (from its formation until 4.031 Gya,) was at first inhospitable to any living organisms. During its formation, the Earth lost a significant part of its initial mass, and consequentially lacked the gravity to hold molecular hydrogen and the bulk of the original inert gases. Soon after initial accretion of Earth at 4.48 Ga, its collision with Theia, a hypothesised impactor, is thought to have created the ejected debris that would eventually form the Moon. This impact would have removed the Earth's primary atmosphere, leaving behind clouds of viscous silicates and carbon dioxide. This unstable atmosphere was short-lived and condensed shortly after to form the bulk silicate Earth, leaving behind an atmosphere largely consisting of water vapor, nitrogen, and carbon dioxide, with smaller amounts of carbon monoxide, hydrogen, and sulfur compounds. The solution of carbon dioxide in water is thought to have made the seas slightly acidic, with a pH of about 5.5.
Condensation to form liquid oceans is theorised to have occurred as early as the Moon-forming impact. This scenario has found support from the dating of 4.404 Gya zircon crystals with high δO values from metamorphosed quartzite of Mount Narryer in Western Australia. The Hadean atmosphere has been characterized as a "gigantic, productive outdoor chemical laboratory," similar to volcanic gases today which still support some abiotic chemistry. Despite the likely increased volcanism from early plate tectonics, the Earth may have been a predominantly water world between 4.4 and 4.3 Gya. It is debated whether or not crust was exposed above this ocean due to uncertainties of what early plate tectonics looked like. For early life to have developed, it is generally thought that a land setting is required, so this question is essential to determining when in Earth's history life evolved. Immediately after the Moon-forming impact, Earth likely had little if any continental crust, a turbulent atmosphere, and a hydrosphere subject to intense ultraviolet light from a T Tauri stage Sun. It was also affected by cosmic radiation, and continued asteroid and comet impacts. Despite all this, niche environments likely existed conducive to life on Earth in the Late-Hadean to Early-Archaean.
The Late Heavy Bombardment hypothesis posits that a period of intense impact occurred at 4.1 to 3.8 Gya during the Hadean and early Archean eons. Originally it was thought that the Late Heavy Bombardment was a single cataclysmic impact event occurring at 3.9 Gya; this would have had the potential to sterilise all life on Earth by volatilising liquid oceans and blocking the Sun needed for photosynthesising primary producers, pushing back the earliest possible emergence of life to after the Late Heavy Bombardment. However, more recent research questioned both the intensity of the Late Heavy Bombardment as well as its potential for sterilisation. Uncertainties as to whether Late Heavy Bombardment was one giant impact or a period of greater impact rates greatly changed the implication of its destructive power. The 3.9 Ga date arose from dating of Apollo mission sample returns collected mostly near the Imbrium Basin, biasing the age of recorded impacts. Impact modelling of the lunar surface reveals that rather than a cataclysmic event at 3.9 Ga, multiple small-scale, short-lived periods of bombardment likely occurred. Terrestrial data backs this idea by showing multiple periods of ejecta in the rock record both before and after the 3.9 Ga marker, suggesting that the early Earth was subject to continuous impacts that would not have had as great an impact on extinction as previously thought. If the Late Heavy Bombardment was not a single cataclysmic event, the emergence of life could have taken place far before 3.9 Ga.
If life evolved in the ocean at depths of more than ten meters, it would have been shielded both from late impacts and the then high levels of ultraviolet radiation from the sun. Geothermically heated oceanic crust could have yielded far more organic compounds through deep hydrothermal vents than the Miller–Urey experiments indicated. The available energy is maximized at 100–150 °C, the temperatures at which hyperthermophilic bacteria and thermoacidophilic archaea live.
Earliest evidence of life
Main article: Earliest known life formsThe exact timing at which life emerged on Earth is unknown. Minimum age estimates are based on evidence from the geologic rock record. The earliest physical evidence of life so far found consists of microbialites in the Nuvvuagittuq Greenstone Belt of Northern Quebec, in banded iron formation rocks at least 3.77 and possibly as old as 4.32 Gya. The micro-organisms could have lived within hydrothermal vent precipitates, soon after the 4.4 Gya formation of oceans during the Hadean. The microbes resembled modern hydrothermal vent bacteria, supporting the view that abiogenesis began in such an environment.
Biogenic graphite has been found in 3.7 Gya metasedimentary rocks from southwestern Greenland and in microbial mat fossils from 3.49 Gya cherts in the Pilbara region of Western Australia. Evidence of early life in rocks from Akilia Island, near the Isua supracrustal belt in southwestern Greenland, dating to 3.7 Gya, have shown biogenic carbon isotopes. In other parts of the Isua supracrustal belt, graphite inclusions trapped within garnet crystals are connected to the other elements of life: oxygen, nitrogen, and possibly phosphorus in the form of phosphate, providing further evidence for life 3.7 Gya. In the Pilbara region of Western Australia, compelling evidence of early life was found in pyrite-bearing sandstone in a fossilized beach, with rounded tubular cells that oxidized sulfur by photosynthesis in the absence of oxygen. Carbon isotope ratios on graphite inclusions from the Jack Hills zircons suggest that life could have existed on Earth from 4.1 Gya.
The Pilbara region of Western Australia contains the Dresser Formation with rocks 3.48 Gya, including layered structures called stromatolites. Their modern counterparts are created by photosynthetic micro-organisms including cyanobacteria. These lie within undeformed hydrothermal-sedimentary strata; their texture indicates a biogenic origin. Parts of the Dresser formation preserve hot springs on land, but other regions seem to have been shallow seas. A molecular clock analysis suggests the LUCA emerged prior to 3.9 Gya.
- Fossilized stromatolites in the Siyeh Formation, Glacier National Park, dated 3.5 Gya, placing them among the earliest life-forms
- Modern stromatolites in Shark Bay, created by photosynthetic cyanobacteria
Producing molecules: prebiotic synthesis
Further information: NucleosynthesisAll chemical elements derive from stellar nucleosynthesis except for hydrogen and some helium and lithium. Basic chemical ingredients of life – the carbon-hydrogen molecule (CH), the carbon-hydrogen positive ion (CH+) and the carbon ion (C+) – can be produced by ultraviolet light from stars. Complex molecules, including organic molecules, form naturally both in space and on planets. Organic molecules on the early Earth could have had either terrestrial origins, with organic molecule synthesis driven by impact shocks or by other energy sources, such as ultraviolet light, redox coupling, or electrical discharges; or extraterrestrial origins (pseudo-panspermia), with organic molecules formed in interstellar dust clouds raining down on to the planet.
Observed extraterrestrial organic molecules
See also: List of interstellar and circumstellar molecules and Pseudo-panspermiaAn organic compound is a chemical whose molecules contain carbon. Carbon is abundant in the Sun, stars, comets, and in the atmospheres of most planets of the Solar System. Organic compounds are relatively common in space, formed by "factories of complex molecular synthesis" which occur in molecular clouds and circumstellar envelopes, and chemically evolve after reactions are initiated mostly by ionizing radiation. Purine and pyrimidine nucleobases including guanine, adenine, cytosine, uracil, and thymine have been found in meteorites. These could have provided the materials for DNA and RNA to form on the early Earth. The amino acid glycine was found in material ejected from comet Wild 2; it had earlier been detected in meteorites. Comets are encrusted with dark material, thought to be a tar-like organic substance formed from simple carbon compounds under ionizing radiation. A rain of material from comets could have brought such complex organic molecules to Earth. It is estimated that during the Late Heavy Bombardment, meteorites may have delivered up to five million tons of organic prebiotic elements to Earth per year. Currently 40,000 tons of cosmic dust falls to Earth each year.
Polycyclic aromatic hydrocarbons
Polycyclic aromatic hydrocarbons (PAH) are the most common and abundant polyatomic molecules in the observable universe, and are a major store of carbon. They seem to have formed shortly after the Big Bang, and are associated with new stars and exoplanets. They are a likely constituent of Earth's primordial sea. PAHs have been detected in nebulae, and in the interstellar medium, in comets, and in meteorites.
A star, HH 46-IR, resembling the sun early in its life, is surrounded by a disk of material which contains molecules including cyanide compounds, hydrocarbons, and carbon monoxide. PAHs in the interstellar medium can be transformed through hydrogenation, oxygenation, and hydroxylation to more complex organic compounds used in living cells.
Nucleobases and nucleotides
Further information: Nucleobase and NucleotideOrganic compounds introduced on Earth by interstellar dust particles can help to form complex molecules, thanks to their peculiar surface-catalytic activities. The RNA component uracil and related molecules, including xanthine, in the Murchison meteorite were likely formed extraterrestrially, as suggested by studies of C/C isotopic ratios. NASA studies of meteorites suggest that all four DNA nucleobases (adenine, guanine and related organic molecules) have been formed in outer space. The cosmic dust permeating the universe contains complex organics ("amorphous organic solids with a mixed aromatic–aliphatic structure") that could be created rapidly by stars. Glycolaldehyde, a sugar molecule and RNA precursor, has been detected in regions of space including around protostars and on meteorites.
Laboratory synthesis
As early as the 1860s, experiments demonstrated that biologically relevant molecules can be produced from interaction of simple carbon sources with abundant inorganic catalysts. The spontaneous formation of complex polymers from abiotically generated monomers under the conditions posited by the "soup" theory is not straightforward. Besides the necessary basic organic monomers, compounds that would have prohibited the formation of polymers were also formed in high concentration during the Miller–Urey and Joan Oró experiments. Biology uses essentially 20 amino acids for its coded protein enzymes, representing a very small subset of the structurally possible products. Since life tends to use whatever is available, an explanation is needed for why the set used is so small. Formamide is attractive as a medium that potentially provided a source of amino acid derivatives from simple aldehyde and nitrile feedstocks.
Sugars
Alexander Butlerov showed in 1861 that the formose reaction created sugars including tetroses, pentoses, and hexoses when formaldehyde is heated under basic conditions with divalent metal ions like calcium. R. Breslow proposed that the reaction was autocatalytic in 1959.
Nucleobases
Nucleobases, such as guanine and adenine, can be synthesized from simple carbon and nitrogen sources, such as hydrogen cyanide (HCN) and ammonia. Formamide produces all four ribonucleotides when warmed with terrestrial minerals. Formamide is ubiquitous in the Universe, produced by the reaction of water and HCN. It can be concentrated by the evaporation of water. HCN is poisonous only to aerobic organisms (eukaryotes and aerobic bacteria), which did not yet exist. It can play roles in other chemical processes such as the synthesis of the amino acid glycine.
DNA and RNA components including uracil, cytosine and thymine can be synthesized under outer space conditions, using starting chemicals such as pyrimidine found in meteorites. Pyrimidine may have been formed in red giant stars or in interstellar dust and gas clouds. All four RNA-bases may be synthesized from formamide in high-energy density events like extraterrestrial impacts.
Other pathways for synthesizing bases from inorganic materials have been reported. Freezing temperatures are advantageous for the synthesis of purines, due to the concentrating effect for key precursors such as hydrogen cyanide. However, while adenine and guanine require freezing conditions for synthesis, cytosine and uracil may require boiling temperatures. Seven amino acids and eleven types of nucleobases formed in ice when ammonia and cyanide were left in a freezer for 25 years. S-triazines (alternative nucleobases), pyrimidines including cytosine and uracil, and adenine can be synthesized by subjecting a urea solution to freeze-thaw cycles under a reductive atmosphere, with spark discharges as an energy source. The explanation given for the unusual speed of these reactions at such a low temperature is eutectic freezing, which crowds impurities in microscopic pockets of liquid within the ice, causing the molecules to collide more often.
Peptides
Prebiotic peptide synthesis is proposed to have occurred through a number of possible routes. Some center on high temperature/concentration conditions in which condensation becomes energetically favorable, while others focus on the availability of plausible prebiotic condensing agents.
Experimental evidence for the formation of peptides in uniquely concentrated environments is bolstered by work suggesting that wet-dry cycles and the presence of specific salts can greatly increase spontaneous condensation of glycine into poly-glycine chains. Other work suggests that while mineral surfaces, such as those of pyrite, calcite, and rutile catalyze peptide condensation, they also catalyze their hydrolysis. The authors suggest that additional chemical activation or coupling would be necessary to produce peptides at sufficient concentrations. Thus, mineral surface catalysis, while important, is not sufficient alone for peptide synthesis.
Many prebiotically plausible condensing/activating agents have been identified, including the following: cyanamide, dicyanamide, dicyandiamide, diaminomaleonitrile, urea, trimetaphosphate, NaCl, CuCl2, (Ni,Fe)S, CO, carbonyl sulfide (COS), carbon disulfide (CS2), SO2, and diammonium phosphate (DAP).
An experiment reported in 2024 used a sapphire substrate with a web of thin cracks under a heat flow, similar to the environment of deep-ocean vents, as a mechanism to separate and concentrate prebiotically relevant building blocks from a dilute mixture, purifying their concentration by up to three orders of magnitude. The authors propose this as a plausible model for the origin of complex biopolymers. This presents another physical process that allows for concentrated peptide precursors to combine in the right conditions. A similar role of increasing amino acid concentration has been suggested for clays as well.
While all of these scenarios involve the condensation of amino acids, the prebiotic synthesis of peptides from simpler molecules such as CO, NH3 and C, skipping the step of amino acid formation, is very efficient.
Producing suitable vesicles
Further information: Gard model, Self-organization § Biology, and CellularizationThe largest unanswered question in evolution is how simple protocells first arose and differed in reproductive contribution to the following generation, thus initiating the evolution of life. The lipid world theory postulates that the first self-replicating object was lipid-like. Phospholipids form lipid bilayers in water while under agitation—the same structure as in cell membranes. These molecules were not present on early Earth, but other amphiphilic long-chain molecules also form membranes. These bodies may expand by insertion of additional lipids, and may spontaneously split into two offspring of similar size and composition. Lipid bodies may have provided sheltering envelopes for information storage, allowing the evolution and preservation of polymers like RNA that store information. Only one or two types of amphiphiles have been studied which might have led to the development of vesicles. There is an enormous number of possible arrangements of lipid bilayer membranes, and those with the best reproductive characteristics would have converged toward a hypercycle reaction, a positive feedback composed of two mutual catalysts represented by a membrane site and a specific compound trapped in the vesicle. Such site/compound pairs are transmissible to the daughter vesicles leading to the emergence of distinct lineages of vesicles, which would have allowed natural selection.
A protocell is a self-organized, self-ordered, spherical collection of lipids proposed as a stepping-stone to the origin of life. A functional protocell has (as of 2014) not yet been achieved in a laboratory setting. Self-assembled vesicles are essential components of primitive cells. The theory of classical irreversible thermodynamics treats self-assembly under a generalized chemical potential within the framework of dissipative systems. The second law of thermodynamics requires that overall entropy increases, yet life is distinguished by its great degree of organization. Therefore, a boundary is needed to separate ordered life processes from chaotic non-living matter.
Irene Chen and Jack W. Szostak suggest that elementary protocells can give rise to cellular behaviors including primitive forms of differential reproduction, competition, and energy storage. Competition for membrane molecules would favor stabilized membranes, suggesting a selective advantage for the evolution of cross-linked fatty acids and even the phospholipids of today. Such micro-encapsulation would allow for metabolism within the membrane and the exchange of small molecules, while retaining large biomolecules inside. Such a membrane is needed for a cell to create its own electrochemical gradient to store energy by pumping ions across the membrane. Fatty acid vesicles in conditions relevant to alkaline hydrothermal vents can be stabilized by isoprenoids which are synthesized by the formose reaction; the advantages and disadvantages of isoprenoids incorporated within the lipid bilayer in different microenvironments might have led to the divergence of the membranes of archaea and bacteria.
Laboratory experiments have shown that vesicles can undergo an evolutionary process under pressure cycling conditions. Simulating the systemic environment in tectonic fault zones within the Earth's crust, pressure cycling leads to the periodic formation of vesicles. Under the same conditions, random peptide chains are being formed, which are being continuously selected for their ability to integrate into the vesicle membrane. A further selection of the vesicles for their stability potentially leads to the development of functional peptide structures, associated with an increase in the survival rate of the vesicles.
Producing biology
Energy and entropy
Further information: EntropyLife requires a loss of entropy, or disorder, as molecules organize themselves into living matter. At the same time, the emergence of life is associated with the formation of structures beyond a certain threshold of complexity. The emergence of life with increasing order and complexity does not contradict the second law of thermodynamics, which states that overall entropy never decreases, since a living organism creates order in some places (e.g. its living body) at the expense of an increase of entropy elsewhere (e.g. heat and waste production).
Multiple sources of energy were available for chemical reactions on the early Earth. Heat from geothermal processes is a standard energy source for chemistry. Other examples include sunlight, lightning, atmospheric entries of micro-meteorites, and implosion of bubbles in sea and ocean waves. This has been confirmed by experiments and simulations. Unfavorable reactions can be driven by highly favorable ones, as in the case of iron-sulfur chemistry. For example, this was probably important for carbon fixation. Carbon fixation by reaction of CO2 with H2S via iron-sulfur chemistry is favorable, and occurs at neutral pH and 100 °C. Iron-sulfur surfaces, which are abundant near hydrothermal vents, can drive the production of small amounts of amino acids and other biomolecules.
Chemiosmosis
Further information: ChemiosmosisIn 1961, Peter Mitchell proposed chemiosmosis as a cell's primary system of energy conversion. The mechanism, now ubiquitous in living cells, powers energy conversion in micro-organisms and in the mitochondria of eukaryotes, making it a likely candidate for early life. Mitochondria produce adenosine triphosphate (ATP), the energy currency of the cell used to drive cellular processes such as chemical syntheses. The mechanism of ATP synthesis involves a closed membrane in which the ATP synthase enzyme is embedded. The energy required to release strongly bound ATP has its origin in protons that move across the membrane. In modern cells, those proton movements are caused by the pumping of ions across the membrane, maintaining an electrochemical gradient. In the first organisms, the gradient could have been provided by the difference in chemical composition between the flow from a hydrothermal vent and the surrounding seawater, or perhaps meteoric quinones that were conducive to the development of chemiosmotic energy across lipid membranes if at a terrestrial origin.
PAH world hypothesis
Main article: PAH world hypothesisThe PAH world hypothesis posits polycyclic aromatic hydrocarbons as precursors to the RNA world.
This section is an excerpt from PAH world hypothesis. The PAH world hypothesis is a speculative hypothesis that proposes that polycyclic aromatic hydrocarbons (PAHs), known to be abundant in the universe, including in comets, and assumed to be abundant in the primordial soup of the early Earth, played a major role in the origin of life by mediating the synthesis of RNA molecules, leading into the RNA world. However, as yet, the hypothesis is untested.The RNA world
Main article: RNA worldThe RNA world hypothesis describes an early Earth with self-replicating and catalytic RNA but no DNA or proteins. Many researchers concur that an RNA world must have preceded the DNA-based life that now dominates. However, RNA-based life may not have been the first to exist. Another model echoes Darwin's "warm little pond" with cycles of wetting and drying.
RNA is central to the translation process. Small RNAs can catalyze all the chemical groups and information transfers required for life. RNA both expresses and maintains genetic information in modern organisms; and the chemical components of RNA are easily synthesized under the conditions that approximated the early Earth, which were very different from those that prevail today. The structure of the ribosome has been called the "smoking gun", with a central core of RNA and no amino acid side chains within 18 Å of the active site that catalyzes peptide bond formation.
The concept of the RNA world was proposed in 1962 by Alexander Rich, and the term was coined by Walter Gilbert in 1986. There were initial difficulties in the explanation of the abiotic synthesis of the nucleotides cytosine and uracil. Subsequent research has shown possible routes of synthesis; for example, formamide produces all four ribonucleotides and other biological molecules when warmed in the presence of various terrestrial minerals.
RNA replicase can function as both code and catalyst for further RNA replication, i.e. it can be autocatalytic. Jack Szostak has shown that certain catalytic RNAs can join smaller RNA sequences together, creating the potential for self-replication. The RNA replication systems, which include two ribozymes that catalyze each other's synthesis, showed a doubling time of the product of about one hour, and were subject to natural selection under the experimental conditions. If such conditions were present on early Earth, then natural selection would favor the proliferation of such autocatalytic sets, to which further functionalities could be added. Self-assembly of RNA may occur spontaneously in hydrothermal vents. A preliminary form of tRNA could have assembled into such a replicator molecule.
Possible precursors to protein synthesis include the synthesis of short peptide cofactors or the self-catalysing duplication of RNA. It is likely that the ancestral ribosome was composed entirely of RNA, although some roles have since been taken over by proteins. Major remaining questions on this topic include identifying the selective force for the evolution of the ribosome and determining how the genetic code arose.
Eugene Koonin has argued that "no compelling scenarios currently exist for the origin of replication and translation, the key processes that together comprise the core of biological systems and the apparent pre-requisite of biological evolution. The RNA World concept might offer the best chance for the resolution of this conundrum but so far cannot adequately account for the emergence of an efficient RNA replicase or the translation system."
From RNA to directed protein synthesis
In line with the RNA world hypothesis, much of modern biology's templated protein biosynthesis is done by RNA molecules—namely tRNAs and the ribosome (consisting of both protein and rRNA components). The most central reaction of peptide bond synthesis is understood to be carried out by base catalysis by the 23S rRNA domain V. Experimental evidence has demonstrated successful di- and tripeptide synthesis with a system consisting of only aminoacyl phosphate adaptors and RNA guides, which could be a possible stepping stone between an RNA world and modern protein synthesis. Aminoacylation ribozymes that can charge tRNAs with their cognate amino acids have also been selected in in vitro experimentation. The authors also extensively mapped fitness landscapes within their selection to find that chance emergence of active sequences was more important that sequence optimization.
Early functional peptides
The first proteins would have had to arise without a fully-fledged system of protein biosynthesis. As discussed above, numerous mechanisms for the prebiotic synthesis of polypeptides exist. However, these random sequence peptides would not have likely had biological function. Thus, significant study has gone into exploring how early functional proteins could have arisen from random sequences. First, some evidence on hydrolysis rates shows that abiotically plausible peptides likely contained significant "nearest-neighbor" biases. This could have had some effect on early protein sequence diversity. In other work by Anthony Keefe and Jack Szostak, mRNA display selection on a library of 6*10 80-mers was used to search for sequences with ATP binding activity. They concluded that approximately 1 in 10 random sequences had ATP binding function. While this is a single example of functional frequency in the random sequence space, the methodology can serve as a powerful simulation tool for understanding early protein evolution.
Phylogeny and LUCA
Further information: Last universal common ancestorStarting with the work of Carl Woese from 1977, genomics studies have placed the last universal common ancestor (LUCA) of all modern life-forms between Bacteria and a clade formed by Archaea and Eukaryota in the phylogenetic tree of life. It lived over 4 Gya. A minority of studies have placed the LUCA in Bacteria, proposing that Archaea and Eukaryota are evolutionarily derived from within Eubacteria; Thomas Cavalier-Smith suggested in 2006 that the phenotypically diverse bacterial phylum Chloroflexota contained the LUCA.
- Phylogenetic tree showing the last universal common ancestor (LUCA) at the root. The major clades are the Bacteria on one hand, and the Archaea and Eukaryota on the other.
In 2016, a set of 355 genes likely present in the LUCA was identified. A total of 6.1 million prokaryotic genes from Bacteria and Archaea were sequenced, identifying 355 protein clusters from among 286,514 protein clusters that were probably common to the LUCA. The results suggest that the LUCA was anaerobic with a Wood–Ljungdahl (reductive Acetyl-CoA) pathway, nitrogen- and carbon-fixing, thermophilic. Its cofactors suggest dependence upon an environment rich in hydrogen, carbon dioxide, iron, and transition metals. Its genetic material was probably DNA, requiring the 4-nucleotide genetic code, messenger RNA, transfer RNA, and ribosomes to translate the code into proteins such as enzymes. LUCA likely inhabited an anaerobic hydrothermal vent setting in a geochemically active environment. It was evidently already a complex organism, and must have had precursors; it was not the first living thing. The physiology of LUCA has been in dispute. Previous research identified 60 proteins common to all life.
- LUCA systems and environment included the Wood–Ljungdahl pathway.
Leslie Orgel argued that early translation machinery for the genetic code would be susceptible to error catastrophe. Geoffrey Hoffmann however showed that such machinery can be stable in function against "Orgel's paradox". Metabolic reactions that have also been inferred in LUCA are the incomplete reverse Krebs cycle, gluconeogenesis, the pentose phosphate pathway, glycolysis, reductive amination, and transamination.
Suitable geological environments
Further information: Alternative abiogenesis scenariosA variety of geologic and environmental settings have been proposed for an origin of life. These theories are often in competition with one another as there are many differing views of prebiotic compound availability, geophysical setting, and early life characteristics. The first organism on Earth likely looked different from LUCA. Between the first appearance of life and where all modern phylogenies began branching, an unknown amount of time passed, with unknown gene transfers, extinctions, and evolutionary adaptation to various environmental niches. One major shift is believed to be from the RNA world to an RNA-DNA-protein world. Modern phylogenies provide more pertinent genetic evidence about LUCA than about its precursors.
The most popular hypotheses for settings for the origin of life are deep sea hydrothermal vents and surface bodies of water. Surface waters can be classified into hot springs, moderate temperature lakes and ponds, and cold settings.
Deep sea hydrothermal vents
Hot fluids
Further information: Hydrothermal ventEarly micro-fossils may have come from a hot world of gases such as methane, ammonia, carbon dioxide, and hydrogen sulfide, toxic to much current life. Analysis of the tree of life places thermophilic and hyperthermophilic bacteria and archaea closest to the root, suggesting that life may have evolved in a hot environment. The deep sea or alkaline hydrothermal vent theory posits that life began at submarine hydrothermal vents. William Martin and Michael Russell have suggested "that life evolved in structured iron monosulphide precipitates in a seepage site hydrothermal mound at a redox, pH, and temperature gradient between sulphide-rich hydrothermal fluid and iron(II)-containing waters of the Hadean ocean floor. The naturally arising, three-dimensional compartmentation observed within fossilized seepage-site metal sulphide precipitates indicates that these inorganic compartments were the precursors of cell walls and membranes found in free-living prokaryotes. The known capability of FeS and NiS to catalyze the synthesis of the acetyl-methylsulphide from carbon monoxide and methylsulphide, constituents of hydrothermal fluid, indicates that pre-biotic syntheses occurred at the inner surfaces of these metal-sulphide-walled compartments".
These form where hydrogen-rich fluids emerge from below the sea floor, as a result of serpentinization of ultra-mafic olivine with seawater and a pH interface with carbon dioxide-rich ocean water. The vents form a sustained chemical energy source derived from redox reactions, in which electron donors (molecular hydrogen) react with electron acceptors (carbon dioxide); see iron–sulfur world theory. These are exothermic reactions.
Chemiosmotic gradient
Further information: Hydrothermal vent and Chemiosmosis § Emergence of chemiosmosisRussell demonstrated that alkaline vents created an abiogenic proton motive force chemiosmotic gradient, ideal for abiogenesis. Their microscopic compartments "provide a natural means of concentrating organic molecules," composed of iron-sulfur minerals such as mackinawite, endowed these mineral cells with the catalytic properties envisaged by Günter Wächtershäuser. This movement of ions across the membrane depends on a combination of two factors:
- Diffusion force caused by concentration gradient—all particles including ions tend to diffuse from higher concentration to lower.
- Electrostatic force caused by electrical potential gradient—cations like protons H tend to diffuse down the electrical potential, anions in the opposite direction.
These two gradients taken together can be expressed as an electrochemical gradient, providing energy for abiogenic synthesis. The proton motive force can be described as the measure of the potential energy stored as a combination of proton and voltage gradients across a membrane (differences in proton concentration and electrical potential).
The surfaces of mineral particles inside deep-ocean hydrothermal vents have catalytic properties similar to those of enzymes and can create simple organic molecules, such as methanol (CH3OH) and formic, acetic, and pyruvic acids out of the dissolved CO2 in the water, if driven by an applied voltage or by reaction with H2 or H2S.
Starting in 1985, researchers proposed that life arose at hydrothermal vents, that spontaneous chemistry in the Earth's crust driven by rock–water interactions at disequilibrium thermodynamically underpinned life's origin and that the founding lineages of the archaea and bacteria were H2-dependent autotrophs that used CO2 as their terminal acceptor in energy metabolism. In 2016, Martin suggested, based upon this evidence, that the LUCA "may have depended heavily on the geothermal energy of the vent to survive". Pores at deep sea hydrothermal vents are suggested to have been occupied by membrane-bound compartments which promoted biochemical reactions. Metabolic intermediates in the Krebs cycle, gluconeogenesis, amino acid bio-synthetic pathways, glycolysis, the pentose phosphate pathway, and including sugars like ribose, and lipid precursors can occur non-enzymatically at conditions relevant to deep-sea alkaline hydrothermal vents.
If the deep marine hydrothermal setting was the site for the origin of life, then abiogenesis could have happened as early as 4.0-4.2 Gya. If life evolved in the ocean at depths of more than ten meters, it would have been shielded both from impacts and the then high levels of ultraviolet radiation from the sun. The available energy in hydrothermal vents is maximized at 100–150 °C, the temperatures at which hyperthermophilic bacteria and thermoacidophilic archaea live. Arguments against a hydrothermal origin of life state that hyperthermophily was a result of convergent evolution in bacteria and archaea, and that a mesophilic environment would have been more likely. This hypothesis, suggested in 1999 by Galtier, was proposed one year before the discovery of the Lost City Hydrothermal Field, where white-smoker hydrothermal vents average ~45-90 °C. Moderate temperatures and alkaline seawater such as that at Lost City are now the favoured hydrothermal vent setting in contrast to acidic, high temperature (~350 °C) black-smokers.
Arguments against a vent setting
Production of prebiotic organic compounds at hydrothermal vents is estimated to be 1x10 kg yr. While a large amount of key prebiotic compounds, such as methane, are found at vents, they are in far lower concentrations than estimates of a Miller-Urey Experiment environment. In the case of methane, the production rate at vents is around 2-4 orders of magnitude lower than predicted amounts in a Miller-Urey Experiment surface atmosphere.
Other arguments against an oceanic vent setting for the origin of life include the inability to concentrate prebiotic materials due to strong dilution from seawater. This open-system cycles compounds through minerals that make up vents, leaving little residence time to accumulate. All modern cells rely on phosphates and potassium for nucleotide backbone and protein formation respectively, making it likely that the first life forms also shared these functions. These elements were not available in high quantities in the Archaean oceans as both primarily come from the weathering of continental rocks on land, far from vent settings. Submarine hydrothermal vents are not conducive to condensation reactions needed for polymerisation to form macromolecules.
An older argument was that key polymers were encapsulated in vesicles after condensation, which supposedly would not happen in saltwater because of the high concentrations of ions. However, while it is true that salinity inhibits vesicle formation from low-diversity mixtures of fatty acids, vesicle formation from a broader, more realistic mix of fatty-acid and 1-alkanol species is more resilient.
Surface bodies of water
Surface bodies of water provide environments able to dry out and be rewetted. Continued wet-dry cycles allow the concentration of prebiotic compounds and condensation reactions to polymerise macromolecules. Moreover, lake and ponds on land allow for detrital input from the weathering of continental rocks which contain apatite, the most common source of phosphates needed for nucleotide backbones. The amount of exposed continental crust in the Hadean is unknown, but models of early ocean depths and rates of ocean island and continental crust growth make it plausible that there was exposed land. Another line of evidence for a surface start to life is the requirement for UV for organism function. UV is necessary for the formation of the U+C nucleotide base pair by partial hydrolysis and nucleobase loss. Simultaneously, UV can be harmful and sterilising to life, especially for simple early lifeforms with little ability to repair radiation damage. Radiation levels from a young Sun were likely greater, and, with no ozone layer, harmful shortwave UV rays would reach the surface of Earth. For life to begin, a shielded environment with influx from UV-exposed sources is necessary to both benefit and protect from UV. Shielding under ice, liquid water, mineral surfaces (e.g. clay) or regolith is possible in a range of surface water settings. While deep sea vents may have input from raining down of surface exposed materials, the likelihood of concentration is lessened by the ocean's open system.
Hot springs
Most branching phylogenies are thermophilic or hyperthermophilic, making it possible that the Last universal common ancestor (LUCA) and preceding lifeforms were similarly thermophilic. Hot springs are formed from the heating of groundwater by geothermal activity. This intersection allows for influxes of material from deep penetrating waters and from surface runoff that transports eroded continental sediments. Interconnected groundwater systems create a mechanism for distribution of life to wider area.
Mulkidjanian and co-authors argue that marine environments did not provide the ionic balance and composition universally found in cells, or the ions required by essential proteins and ribozymes, especially with respect to high K/Na ratio, Mn, Zn and phosphate concentrations. They argue that the only environments that mimic the needed conditions on Earth are hot springs similar to ones at Kamchatka. Mineral deposits in these environments under an anoxic atmosphere would have suitable pH (while current pools in an oxygenated atmosphere would not), contain precipitates of photocatalytic sulfide minerals that absorb harmful ultraviolet radiation, have wet-dry cycles that concentrate substrate solutions to concentrations amenable to spontaneous formation of biopolymers created both by chemical reactions in the hydrothermal environment, and by exposure to UV light during transport from vents to adjacent pools that would promote the formation of biomolecules. The hypothesized pre-biotic environments are similar to hydrothermal vents, with additional components that help explain peculiarities of the LUCA.
A phylogenomic and geochemical analysis of proteins plausibly traced to the LUCA shows that the ionic composition of its intracellular fluid is identical to that of hot springs. The LUCA likely was dependent upon synthesized organic matter for its growth. Experiments show that RNA-like polymers can be synthesized in wet-dry cycling and UV light exposure. These polymers were encapsulated in vesicles after condensation. Potential sources of organics at hot springs might have been transport by interplanetary dust particles, extraterrestrial projectiles, or atmospheric or geochemical synthesis. Hot springs could have been abundant in volcanic landmasses during the Hadean.
Temperate surface bodies of water
A mesophilic start in surface bodies of waters hypothesis has evolved from Darwin's concept of a 'warm little pond' and the Oparin-Haldane hypothesis. Freshwater bodies under temperate climates can accumulate prebiotic materials while providing suitable environmental conditions conducive to simple life forms. The climate during the Archaean is still a highly debated topic, as there is uncertainty about what continents, oceans, and the atmosphere looked like then. Atmospheric reconstructions of the Archaean from geochemical proxies and models state that sufficient greenhouse gases were present to maintain surface temperatures between 0-40 °C. Under this assumption, there is a greater abundance of moderate temperature niches in which life could begin.
Strong lines of evidence for mesophily from biomolecular studies include Galtier's G+C nucleotide thermometer. G+C are more abundant in thermophiles due to the added stability of an additional hydrogen bond not present between A+T nucleotides. rRNA sequencing on a diverse range of modern lifeforms show that LUCA's reconstructed G+C content was likely representative of moderate temperatures.
Although most modern phylogenies are thermophilic or hyperthermophilic, it is possible that their widespread diversity today is a product of convergent evolution and horizontal gene transfer rather than an inherited trait from LUCA. The reverse gyrase topoisomerase is found exclusively in thermophiles and hyperthermophiles as it allows for coiling of DNA. The reverse gyrase enzyme requires ATP to function, both of which are complex biomolecules. If an origin of life is hypothesised to involve a simple organism that had not yet evolved a membrane, let alone ATP, this would make the existence of reverse gyrase improbable. Moreover, phylogenetic studies show that reverse gyrase had an archaeal origin, and that it was transferred to bacteria by horizontal gene transfer. This implies that reverse gyrase was not present in the LUCA.
Icy surface bodies of water
Cold-start origin of life theories stem from the idea there may have been cold enough regions on the early Earth that large ice cover could be found. Stellar evolution models predict that the Sun's luminosity was ~25% weaker than it is today. Fuelner states that although this significant decrease in solar energy would have formed an icy planet, there is strong evidence for liquid water to be present, possibly driven by a greenhouse effect. This would create an early Earth with both liquid oceans and icy poles.
Ice melts that form from ice sheets or glaciers melts create freshwater pools, another niche capable of experiencing wet-dry cycles. While these pools that exist on the surface would be exposed to intense UV radiation, bodies of water within and under ice are sufficiently shielded while remaining connected to UV exposed areas through ice cracks. Suggestions of impact melting of ice allow freshwater paired with meteoritic input, a popular vessel for prebiotic components. Near-seawater levels of sodium chloride are found to destabilize fatty acid membrane self-assembly, making freshwater settings appealing for early membranous life.
Icy environments would trade the faster reaction rates that occur in warm environments for increased stability and accumulation of larger polymers. Experiments simulating Europa-like conditions of ~20 °C have synthesised amino acids and adenine, showing that Miller-Urey type syntheses can still occur at cold temperatures. In an RNA world, the ribozyme would have had even more functions than in a later DNA-RNA-protein-world. For RNA to function, it must be able to fold, a process that is hindered by temperatures above 30 °C. While RNA folding in psychrophilic organisms is slower, the process is more successful as hydrolysis is also slower. Shorter nucleotides would not suffer from higher temperatures.
Inside the continental crust
An alternative geological environment has been proposed by the geologist Ulrich Schreiber and the physical chemist Christian Mayer: the continental crust. Tectonic fault zones could present a stable and well-protected environment for long-term prebiotic evolution. Inside these systems of cracks and cavities, water and carbon dioxide present the bulk solvents. Their phase state would depend on the local temperature and pressure conditions and could vary between liquid, gaseous and supercritical. When forming two separate phases (e.g., liquid water and supercritical carbon dioxide in depths of little more than 1 km), the system provides optimal conditions for phase transfer reactions. Concurrently, the contents of the tectonic fault zones are being supplied by a multitude of inorganic educts (e.g., carbon monoxide, hydrogen, ammonia, hydrogen cyanide, nitrogen, and even phosphate from dissolved apatite) and simple organic molecules formed by hydrothermal chemistry (e.g. amino acids, long-chain amines, fatty acids, long-chain aldehydes). Finally, the abundant mineral surfaces provide a rich choice of catalytic activity.
An especially interesting section of the tectonic fault zones is located at a depth of approximately 1000 m. For the carbon dioxide part of the bulk solvent, it provides temperature and pressure conditions near the phase transition point between the supercritical and the gaseous state. This leads to a natural accumulation zone for lipophilic organic molecules that dissolve well in supercritical CO2, but not in its gaseous state, leading to their local precipitation. Periodic pressure variations such as caused by geyser activity or tidal influences result in periodic phase transitions, keeping the local reaction environment in a constant non-equilibrium state. In presence of amphiphilic compounds (such as the long chain amines and fatty acids mentioned above), subsequent generations of vesicles are being formed that are constantly and efficiently being selected for their stability. The resulting structures could provide hydrothermal vents as well as hot springs with raw material for further development.
Homochirality
Main article: HomochiralityHomochirality is the geometric uniformity of materials composed of chiral (non-mirror-symmetric) units. Living organisms use molecules that have the same chirality (handedness): with almost no exceptions, amino acids are left-handed while nucleotides and sugars are right-handed. Chiral molecules can be synthesized, but in the absence of a chiral source or a chiral catalyst, they are formed in a 50/50 (racemic) mixture of both forms. Known mechanisms for the production of non-racemic mixtures from racemic starting materials include: asymmetric physical laws, such as the electroweak interaction; asymmetric environments, such as those caused by circularly polarized light, quartz crystals, or the Earth's rotation, statistical fluctuations during racemic synthesis, and spontaneous symmetry breaking.
Once established, chirality would be selected for. A small bias (enantiomeric excess) in the population can be amplified into a large one by asymmetric autocatalysis, such as in the Soai reaction. In asymmetric autocatalysis, the catalyst is a chiral molecule, which means that a chiral molecule is catalyzing its own production. An initial enantiomeric excess, such as can be produced by polarized light, then allows the more abundant enantiomer to outcompete the other.
Homochirality may have started in outer space, as on the Murchison meteorite the amino acid L-alanine (left-handed) is more than twice as frequent as its D (right-handed) form, and L-glutamic acid is more than three times as abundant as its D counterpart. Amino acids from meteorites show a left-handed bias, whereas sugars show a predominantly right-handed bias: this is the same preference found in living organisms, suggesting an abiogenic origin of these compounds.
In a 2010 experiment by Robert Root-Bernstein, "two D-RNA-oligonucleotides having inverse base sequences (D-CGUA and D-AUGC) and their corresponding L-RNA-oligonucleotides (L-CGUA and L-AUGC) were synthesized and their affinity determined for Gly and eleven pairs of L- and D-amino acids". The results suggest that homochirality, including codon directionality, might have "emerged as a function of the origin of the genetic code".
See also
- Alternative abiogenesis scenarios
- Autopoiesis
- Formamide-based prebiotic chemistry – Scientific efforts aimed at reconstructing the beginnings of life
- Proto-metabolism – Chemical reactions which turn into modern metabolism
- GADV-protein world hypothesis – A hypothetical stage of abiogenesis
- Genetic recombination – Production of offspring with combinations of traits that differ from those found in either parent
- Shadow biosphere – Hypothetical biosphere of Earth
- Manganese metallic nodules
Notes
- The reactions are:
- FeS + H2S → FeS2 + 2H + 2e
- FeS + H2S + CO2 → FeS2 + HCOOH
- The reactions are:
Reaction 1: Fayalite + water → magnetite + aqueous silica + hydrogen- 3Fe2SiO4 + 2H2O → 2Fe3O4 + 3SiO2 + 2H2
- 3Mg2SiO4 + SiO2 + 4H2O → 2Mg3Si2O5(OH)4
- 2Mg2SiO4 + 3H2O → Mg3Si2O5(OH)4 + Mg(OH)2
- 2 Ca2SiO4 + 4 H2O → 3 CaO · 2 SiO2 · 3 H2O + Ca(OH)2
References
- ^ Walker, Sara I.; Packard, N.; Cody, G. D. (13 November 2017). "Re-conceptualizing the origins of life". Philosophical Transactions of the Royal Society A. 375 (2109): 20160337. Bibcode:2017RSPTA.37560337W. doi:10.1098/rsta.2016.0337. PMC 5686397. PMID 29133439.
- ^ "NASA Astrobiology Strategy" (PDF). NASA. 2015. Archived from the original (PDF) on 22 December 2016. Retrieved 24 September 2017.
- Trifonov, Edward N. (17 March 2011). "Vocabulary of Definitions of Life Suggests a Definition". Journal of Biomolecular Structure and Dynamics. 29 (2): 259–266. doi:10.1080/073911011010524992. ISSN 0739-1102. PMID 21875147. S2CID 38476092.
- Voytek, Mary A. (6 March 2021). "About Life Detection". NASA. Archived from the original on 16 August 2021. Retrieved 8 March 2021.
- ^ Witzany, Guenther (2016). "Crucial steps to life: From chemical reactions to code using agents" (PDF). BioSystems. 140: 49–57. Bibcode:2016BiSys.140...49W. doi:10.1016/j.biosystems.2015.12.007. PMID 26723230. S2CID 30962295. Archived (PDF) from the original on 31 October 2018. Retrieved 30 October 2018.
- ^ Howell, Elizabeth (8 December 2014). "How Did Life Become Complex, And Could It Happen Beyond Earth?". Astrobiology Magazine. Archived from the original on 15 February 2018. Retrieved 14 April 2022.
- Oparin, Aleksandr Ivanovich (2003) . The Origin of Life. Translated by Morgulis, Sergius (2 ed.). Mineola, New York: Courier. ISBN 978-0-486-49522-4. Archived from the original on 2 April 2023. Retrieved 16 June 2018.
- ^ Peretó, Juli (2005). "Controversies on the origin of life" (PDF). International Microbiology. 8 (1): 23–31. PMID 15906258. Archived from the original (PDF) on 24 August 2015. Retrieved 1 June 2015.
- Compare: Scharf, Caleb; et al. (18 December 2015). "A Strategy for Origins of Life Research". Astrobiology. 15 (12): 1031–1042. Bibcode:2015AsBio..15.1031S. doi:10.1089/ast.2015.1113. PMC 4683543. PMID 26684503.
What do we mean by the origins of life (OoL)? ... Since the early 20th century the phrase OoL has been used to refer to the events that occurred during the transition from non-living to living systems on Earth, i.e., the origin of terrestrial biology (Oparin, 1924; Haldane, 1929). The term has largely replaced earlier concepts such as abiogenesis (Kamminga, 1980; Fry, 2000).
- ^ Weiss, M. C.; Sousa, F. L.; Mrnjavac, N.; Neukirchen, S.; Roettger, M.; Nelson-Sathi, S.; Martin, W.F. (2016). "The physiology and habitat of the last universal common ancestor" (PDF). Nature Microbiology. 1 (9): 16116. doi:10.1038/NMICROBIOL.2016.116. PMID 27562259. S2CID 2997255. Archived (PDF) from the original on 29 January 2023. Retrieved 21 September 2022.
- Tirard, Stephane (20 April 2015). "Abiogenesis". Encyclopedia of Astrobiology. p. 1. doi:10.1007/978-3-642-27833-4_2-4. ISBN 978-3-642-27833-4.
Thomas Huxley (1825–1895) used the term abiogenesis in an important text published in 1870. He strictly made the difference between spontaneous generation, which he did not accept, and the possibility of the evolution of matter from inert to living, without any influence of life. ... Since the end of the nineteenth century, evolutive abiogenesis means increasing complexity and evolution of matter from inert to living state in the abiotic context of evolution of primitive Earth.
- Luisi, Pier Luigi (2018). The Emergence of Life: From Chemical Origins to Synthetic Biology. Cambridge University Press. p. 416. ISBN 9781108735506.
However, the turning point of non-life to life has never been put into one experimental set up. There are, of course, several hypotheses, and this plethora of ideas means already that we do not have a convincing one.
- Graham, Robert W. (February 1990). "Extraterrestrial Life in the Universe" (PDF). NASA (NASA Technical Memorandum 102363). Lewis Research Center, Cleveland, Ohio. Archived (PDF) from the original on 3 September 2014. Retrieved 2 June 2015.
- Altermann 2009, p. xvii
- Oparin 1953, p. vi
- Warmflash, David; Warmflash, Benjamin (November 2005). "Did Life Come from Another World?". Scientific American. 293 (5): 64–71. Bibcode:2005SciAm.293e..64W. doi:10.1038/scientificamerican1105-64. PMID 16318028.
- Yarus 2010, p. 47
- Ward, Peter; Kirschvink, Joe (2015). A New History of Life: the radical discoveries about the origins and evolution of life on earth. Bloomsbury Press. pp. 39–40. ISBN 978-1-60819-910-5.
- Sheldon 2005
- Lennox 2001, pp. 229–258
- ^ Bernal 1967
- Balme, D. M. (1962). "Development of Biology in Aristotle and Theophrastus: Theory of Spontaneous Generation". Phronesis. 7 (1–2): 91–104. doi:10.1163/156852862X00052.
- Ross 1652
- Dobell 1960
- Bondeson 1999
- Levine, R.; Evers, C. "The Slow Death of Spontaneous Generation (1668-1859)". Archived from the original on 26 April 2008. Retrieved 18 April 2013.
- Oparin 1953, p. 196
- Tyndall 1905, IV, XII (1876), XIII (1878)
- Horneck, Gerda; Klaus, David M.; Mancinelli, Rocco L. (March 2010). "Space Microbiology". Microbiology and Molecular Biology Reviews. 74 (1): 121–156. Bibcode:2010MMBR...74..121H. doi:10.1128/MMBR.00016-09. PMC 2832349. PMID 20197502.
- Wickramasinghe, Chandra (2011). "Bacterial morphologies supporting cometary panspermia: a reappraisal". International Journal of Astrobiology. 10 (1): 25–30. Bibcode:2011IJAsB..10...25W. CiteSeerX 10.1.1.368.4449. doi:10.1017/S1473550410000157. S2CID 7262449.
- Rampelotto, P. H. (2010). "Panspermia: A promising field of research". In: Astrobiology Science Conference. Abs 5224.
- Chang, Kenneth (12 September 2016). "Visions of Life on Mars in Earth's Depths". The New York Times. Archived from the original on 12 September 2016. Retrieved 12 September 2016.
- Aguilera Mochón, Juan Antonio (2016). El origen de la vida en la tierra [The origin of life on Earth] (in Spanish). Spain: RBA. ISBN 978-84-473-8386-3.
- "Letter no. 7471, Charles Darwin to Joseph Dalton Hooker, 1 February (1871)". Darwin Correspondence Project. Archived from the original on 7 July 2020. Retrieved 7 July 2020.
- Priscu, John C. "Origin and Evolution of Life on a Frozen Earth". Arlington County, Virginia: National Science Foundation. Archived from the original on 18 December 2013. Retrieved 1 March 2014.
- Marshall, Michael (11 November 2020). "Charles Darwin's hunch about early life was probably right". BBC News. Archived from the original on 11 November 2020. Retrieved 11 November 2020.
- Bahadur, Krishna (1973). "Photochemical Formation of Self–sustaining Coacervates" (PDF). Proceedings of the Indian National Science Academy. 39 (4): 455–467. doi:10.1016/S0044-4057(75)80076-1. PMID 1242552. Archived from the original (PDF) on 19 October 2013.
- Bahadur, Krishna (1975). "Photochemical Formation of Self-Sustaining Coacervates". Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Central Journal for Bacteriology, Parasitology, Infectious Diseases and Hygiene). 130 (3): 211–218. doi:10.1016/S0044-4057(75)80076-1. OCLC 641018092. PMID 1242552. Archived from the original on 13 December 2022. Retrieved 13 December 2022.
- Bryson 2004, pp. 300–302
- Bernal 1951
- Martin, William F. (January 2003). "On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells". Phil. Trans. R. Soc. Lond. A. 358 (1429): 59–83. doi:10.1098/rstb.2002.1183. PMC 1693102. PMID 12594918.
- Bernal, John Desmond (September 1949). "The Physical Basis of Life". Proceedings of the Physical Society, Section A. 62 (9): 537–558. Bibcode:1949PPSA...62..537B. doi:10.1088/0370-1298/62/9/301. S2CID 83754271.
- Miller, Stanley L. (15 May 1953). "A Production of Amino Acids Under Possible Primitive Earth Conditions". Science. 117 (3046): 528–529. Bibcode:1953Sci...117..528M. doi:10.1126/science.117.3046.528. PMID 13056598.
- Parker, Eric T.; Cleaves, Henderson J.; Dworkin, Jason P.; et al. (5 April 2011). "Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment". PNAS. 108 (14): 5526–5531. Bibcode:2011PNAS..108.5526P. doi:10.1073/pnas.1019191108. PMC 3078417. PMID 21422282.
- Bernal 1967, p. 143
- ^ Cleaves, H. James; Chalmers, John H.; Lazcano, Antonio; et al. (April 2008). "A Reassessment of Prebiotic Organic Synthesis in Neutral Planetary Atmospheres". Origins of Life and Evolution of Biospheres. 38 (2): 105–115. Bibcode:2008OLEB...38..105C. doi:10.1007/s11084-007-9120-3. PMID 18204914. S2CID 7731172.
- Chyba, Christopher F. (13 May 2005). "Rethinking Earth's Early Atmosphere". Science. 308 (5724): 962–963. doi:10.1126/science.1113157. PMID 15890865. S2CID 93303848.
- Barton et al. 2007, pp. 93–95
- Bada & Lazcano 2009, pp. 56–57
- Bada, Jeffrey L.; Lazcano, Antonio (2 May 2003). "Prebiotic Soup – Revisiting the Miller Experiment" (PDF). Science. 300 (5620): 745–746. doi:10.1126/science.1085145. PMID 12730584. S2CID 93020326. Archived (PDF) from the original on 4 March 2016. Retrieved 13 June 2015.
- Madau, Piero; Dickinson, Mark (18 August 2014). "Cosmic Star-Formation History". Annual Review of Astronomy and Astrophysics. 52 (1): 415–486. arXiv:1403.0007. Bibcode:2014ARA&A..52..415M. doi:10.1146/annurev-astro-081811-125615. S2CID 658354. Archived from the original on 1 July 2022. Retrieved 8 December 2023.
- Marigo, Paola (6 July 2020). "Carbon star formation as seen through the non-monotonic initial–final mass relation". Nature Astronomy. 152 (11): 1102–1110. arXiv:2007.04163. Bibcode:2020NatAs...4.1102M. doi:10.1038/s41550-020-1132-1. S2CID 220403402. Archived from the original on 16 February 2023. Retrieved 7 July 2020.
- "WMAP- Life in the Universe". Archived from the original on 29 January 2023. Retrieved 27 September 2019.
- "Formation of Solar Systems: Solar Nebular Theory". University of Massachusetts Amherst. Archived from the original on 27 September 2019. Retrieved 27 September 2019.
- "Age of the Earth". United States Geological Survey. 9 July 2007. Archived from the original on 23 December 2005. Retrieved 10 January 2006.
- Dalrymple 2001, pp. 205–221
- Fesenkov 1959, p. 9
- Bottke, W. F.; Vokrouhlický, D.; Marchi, S.; Swindle, T.; Scott, E. R. D.; Weirich, J. R.; Levison, H. (17 April 2015). "Dating the Moon-forming impact event with asteroidal meteorites". Science. 348 (6232): 321–323. Bibcode:2015Sci...348..321B. doi:10.1126/science.aaa0602. PMID 25883354. S2CID 206632612.
- Kasting, James F. (12 February 1993). "Earth's Early Atmosphere" (PDF). Science. 259 (5097): 920–926. Bibcode:1993Sci...259..920K. doi:10.1126/science.11536547. PMID 11536547. S2CID 21134564. Archived from the original (PDF) on 10 October 2015. Retrieved 28 July 2015.
- ^ Follmann, Hartmut; Brownson, Carol (November 2009). "Darwin's warm little pond revisited: from molecules to the origin of life". Naturwissenschaften. 96 (11): 1265–1292. Bibcode:2009NW.....96.1265F. doi:10.1007/s00114-009-0602-1. PMID 19760276. S2CID 23259886.
- Morse, John (September 1998). "Hadean Ocean Carbonate Geochemistry". Aquatic Geochemistry. 4 (3/4): 301–319. Bibcode:1998MinM...62.1027M. doi:10.1023/A:1009632230875. S2CID 129616933.
- Sleep, Norman H.; Zahnle, Kevin J.; Lupu, Roxana E. (13 September 2014). "Terrestrial aftermath of the Moon-forming impact". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 372 (2024): 20130172. Bibcode:2014RSPTA.37230172S. doi:10.1098/rsta.2013.0172. PMID 25114303. S2CID 6902632.
- Morse, John W.; Mackenzie, Fred T. (1998). "[No title found]". Aquatic Geochemistry. 4 (3/4): 301–319. doi:10.1023/A:1009632230875. S2CID 129616933. Archived from the original on 31 January 2024. Retrieved 8 December 2023.
- Crowley, James L.; Myers, John S.; Sylvester, Paul J; Cox, Richard A. (May 2005). "Detrital Zircon from the Jack Hills and Mount Narryer, Western Australia: Evidence for Diverse >4.0 Ga Source Rocks". The Journal of Geology. 113 (3): 239–263. Bibcode:2005JG....113..239C. doi:10.1086/428804. S2CID 140715676. Archived from the original on 16 December 2023. Retrieved 8 December 2023.
- Wilde, Simon A.; Valley, John W.; Peck, William H.; Graham, Colin M. (11 January 2001). "Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago" (PDF). Nature. 409 (6817): 175–178. Bibcode:2001Natur.409..175W. doi:10.1038/35051550. PMID 11196637. S2CID 4319774. Archived (PDF) from the original on 5 June 2015. Retrieved 3 June 2015.
- Korenaga, Jun (December 2008). "Plate tectonics, flood basalts and the evolution of Earth's oceans". Terra Nova. 20 (6): 419–439. Bibcode:2008TeNov..20..419K. doi:10.1111/j.1365-3121.2008.00843.x. S2CID 36766331.
- Rosing, Minik T.; Bird, Dennis K.; Sleep, Norman H.; et al. (22 March 2006). "The rise of continents – An essay on the geologic consequences of photosynthesis". Palaeogeography, Palaeoclimatology, Palaeoecology. 232 (2–4): 99–113. Bibcode:2006PPP...232...99R. doi:10.1016/j.palaeo.2006.01.007. Archived (PDF) from the original on 14 July 2015. Retrieved 8 June 2015.
- Tera, Fouad; Papanastassiou, D.A.; Wasserburg, G.J. (April 1974). "Isotopic evidence for a terminal lunar cataclysm". Earth and Planetary Science Letters. 22 (1): 1–21. Bibcode:1974E&PSL..22....1T. doi:10.1016/0012-821x(74)90059-4. Archived from the original on 31 January 2024.
- Stoffler, D. (1 January 2006). "Cratering History and Lunar Chronology". Reviews in Mineralogy and Geochemistry. 60 (1): 519–596. Bibcode:2006RvMG...60..519S. doi:10.2138/rmg.2006.60.05. Archived from the original on 31 January 2024.
- Sleep, Norman H.; Zahnle, Kevin J.; Kasting, James F.; Morowitz, Harold J. (December 1989). "Annihilation of ecosystems by large asteroid impacts on the early Earth". Nature. 342 (6246): 139–142. Bibcode:1989Natur.342..139S. doi:10.1038/342139a0. PMID 11536616. S2CID 1137852. Archived from the original on 31 January 2024.
- Fassett, Caleb I.; Minton, David A. (23 June 2013). "Impact bombardment of the terrestrial planets and the early history of the Solar System". Nature Geoscience. 6 (7): 520–524. Bibcode:2013NatGe...6..520F. doi:10.1038/ngeo1841. Archived from the original on 31 January 2024.
- Abramov, Oleg; Mojzsis, Stephen J. (May 2009). "Microbial habitability of the Hadean Earth during the late heavy bombardment". Nature. 459 (7245): 419–422. Bibcode:2009Natur.459..419A. doi:10.1038/nature08015. PMID 19458721. S2CID 3304147. Archived from the original on 31 January 2024.
- Boehnke, Patrick; Harrison, T. Mark (12 September 2016). "Illusory Late Heavy Bombardments". Proceedings of the National Academy of Sciences. 113 (39): 10802–10806. Bibcode:2016PNAS..11310802B. doi:10.1073/pnas.1611535113. PMC 5047187. PMID 27621460.
- Zellner, Nicolle E. B. (3 May 2017). "Cataclysm No More: New Views on the Timing and Delivery of Lunar Impactors". Origins of Life and Evolution of Biospheres. 47 (3): 261–280. arXiv:1704.06694. Bibcode:2017OLEB...47..261Z. doi:10.1007/s11084-017-9536-3. PMC 5602003. PMID 28470374.
- Lowe, Donald R.; Byerly, Gary R. (1 April 2018). "The terrestrial record of Late Heavy Bombardment". New Astronomy Reviews. 81: 39–61. Bibcode:2018NewAR..81...39L. doi:10.1016/j.newar.2018.03.002.
- Davies 1999, p. 155
- Bock & Goode 1996
- ^ Dodd, Matthew S.; Papineau, Dominic; Grenne, Tor; et al. (1 March 2017). "Evidence for early life in Earth's oldest hydrothermal vent precipitates". Nature. 543 (7643): 60–64. Bibcode:2017Natur.543...60D. doi:10.1038/nature21377. PMID 28252057. Archived from the original on 8 September 2017. Retrieved 2 March 2017.
- Ohtomo, Yoko; Kakegawa, Takeshi; Ishida, Akizumi; et al. (January 2014). "Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks". Nature Geoscience. 7 (1): 25–28. Bibcode:2014NatGe...7...25O. doi:10.1038/ngeo2025.
- Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M. (16 November 2013). "Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Gyo Dresser Formation, Pilbara, Western Australia". Astrobiology. 13 (12): 1103–1124. Bibcode:2013AsBio..13.1103N. doi:10.1089/ast.2013.1030. PMC 3870916. PMID 24205812.
- Davies 1999
- Hassenkam, T.; Andersson, M. P.; Dalby, K. N.; Mackenzie, D. M. A.; Rosing, M.T. (2017). "Elements of Eoarchean life trapped in mineral inclusions". Nature. 548 (7665): 78–81. Bibcode:2017Natur.548...78H. doi:10.1038/nature23261. PMID 28738409. S2CID 205257931.
- O'Donoghue, James (21 August 2011). "Oldest reliable fossils show early life was a beach". New Scientist. 211: 13. doi:10.1016/S0262-4079(11)62064-2. Archived from the original on 30 June 2015.
- Wacey, David; Kilburn, Matt R.; Saunders, Martin; et al. (October 2011). "Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia". Nature Geoscience. 4 (10): 698–702. Bibcode:2011NatGe...4..698W. doi:10.1038/ngeo1238.
- Bell, Elizabeth A.; Boehnke, Patrick; Harrison, T. Mark; Mao, Wendy L. (24 November 2015). "Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon". Proceedings of the National Academy of Sciences. 112 (47): 14518–14521. Bibcode:2015PNAS..11214518B. doi:10.1073/pnas.1517557112. PMC 4664351. PMID 26483481.
- Baumgartner, Rafael; Van Kranendonk, Martin; Wacey, David; et al. (2019). "Nano−porous pyrite and organic matter in 3.5-billion-year-old stromatolites record primordial life" (PDF). Geology. 47 (11): 1039–1043. Bibcode:2019Geo....47.1039B. doi:10.1130/G46365.1. S2CID 204258554. Archived (PDF) from the original on 5 December 2020. Retrieved 10 January 2021.
- Djokic, Tara; Van Kranendonk, Martin J.; Campbell, Kathleen A.; Walter, Malcolm R.; Ward, Colin R. (9 May 2017). "Earliest signs of life on land preserved in ca. 3.5 Gao hot spring deposits". Nature Communications. 8: 15263. Bibcode:2017NatCo...815263D. doi:10.1038/ncomms15263. PMC 5436104. PMID 28486437.
- Betts, Holly C.; Puttick, Mark N.; Clark, James W.; Williams, Tom A.; Donoghue, Philip C. J.; Pisani, Davide (20 August 2018). "Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin". Nature Ecology & Evolution. 2 (10): 1556–1562. Bibcode:2018NatEE...2.1556B. doi:10.1038/s41559-018-0644-x. PMC 6152910. PMID 30127539.
- Landau, Elizabeth (12 October 2016). "Building Blocks of Life's Building Blocks Come From Starlight". NASA. Archived from the original on 13 October 2016. Retrieved 13 October 2016.
- ^ Ehrenfreund, Pascale; Cami, Jan (December 2010). "Cosmic carbon chemistry: from the interstellar medium to the early Earth". Cold Spring Harbor Perspectives in Biology. 2 (12): a002097. doi:10.1101/cshperspect.a002097. PMC 2982172. PMID 20554702.
- Geballe, Thomas R.; Najarro, Francisco; Figer, Donald F.; et al. (10 November 2011). "Infrared diffuse interstellar bands in the Galactic Centre region". Nature. 479 (7372): 200–202. arXiv:1111.0613. Bibcode:2011Natur.479..200G. doi:10.1038/nature10527. PMID 22048316. S2CID 17223339.
- Klyce 2001
- ^ Hoover, Rachel (21 February 2014). "Need to Track Organic Nano-Particles Across the Universe? NASA's Got an App for That". Ames Research Center. NASA. Archived from the original on 6 September 2015. Retrieved 22 June 2015.
- Goncharuk, Vladislav V.; Zui, O. V. (February 2015). "Water and carbon dioxide as the main precursors of organic matter on Earth and in space". Journal of Water Chemistry and Technology. 37 (1): 2–3. Bibcode:2015JWCT...37....2G. doi:10.3103/S1063455X15010026. S2CID 97965067.
- Abou Mrad, Ninette; Vinogradoff, Vassilissa; Duvernay, Fabrice; et al. (2015). "Laboratory experimental simulations: Chemical evolution of the organic matter from interstellar and cometary ice analogs". Bulletin de la Société Royale des Sciences de Liège. 84: 21–32. Bibcode:2015BSRSL..84...21A. Archived from the original on 13 April 2015. Retrieved 6 April 2015.
- Oba, Yasuhiro (26 April 2022). "Identifying the wide diversity of extraterrestrial purine and pyrimidine nucleobases in carbonaceous meteorites". Nature Communications. 13 (2008): 2008. Bibcode:2022NatCo..13.2008O. doi:10.1038/s41467-022-29612-x. PMC 9042847. PMID 35473908. S2CID 248402205.
- "'Life chemical' detected in comet". BBC News. London. 18 August 2009. Archived from the original on 25 May 2015. Retrieved 23 June 2015.
- Thompson, William Reid; Murray, B. G.; Khare, Bishun Narain; Sagan, Carl (30 December 1987). "Coloration and darkening of methane clathrate and other ices by charged particle irradiation: Applications to the outer solar system". Journal of Geophysical Research. 92 (A13): 14933–14947. Bibcode:1987JGR....9214933T. doi:10.1029/JA092iA13p14933. PMID 11542127.
- Goldman, Nir; Tamblyn, Isaac (20 June 2013). "Prebiotic Chemistry within a Simple Impacting Icy Mixture". Journal of Physical Chemistry A. 117 (24): 5124–5131. Bibcode:2013JPCA..117.5124G. doi:10.1021/jp402976n. PMID 23639050. S2CID 5144843. Archived from the original on 21 July 2018. Retrieved 29 August 2019.
- https://www.astronomy.com/science/how-much-dust-falls-on-earth-each-year-does-it-affect-our-planets-gravity/
- "NASA Ames PAH IR Spectroscopic Database". NASA. Archived from the original on 29 June 2015. Retrieved 17 June 2015.
- ^ Hudgins, Douglas M.; Bauschlicher, Charles W. Jr.; Allamandola, Louis J. (10 October 2005). "Variations in the Peak Position of the 6.2 μm Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population". The Astrophysical Journal. 632 (1): 316–332. Bibcode:2005ApJ...632..316H. CiteSeerX 10.1.1.218.8786. doi:10.1086/432495. S2CID 7808613.
- ^ Des Marais, David J.; Allamandola, Louis J.; Sandford, Scott; et al. (2009). "Cosmic Distribution of Chemical Complexity". Ames Research Center. Mountain View, California: NASA. Archived from the original on 27 February 2014. Retrieved 24 June 2015.
- ^ Carey, Bjorn (18 October 2005). "Life's Building Blocks 'Abundant in Space'". Space.com. Watsonville, California: Imaginova. Archived from the original on 26 June 2015. Retrieved 23 June 2015.
- García-Hernández, Domingo. A.; Manchado, Arturo; García-Lario, Pedro; et al. (20 November 2010). "Formation of Fullerenes in H-Containing Planetary Nebulae". The Astrophysical Journal Letters. 724 (1): L39 – L43. arXiv:1009.4357. Bibcode:2010ApJ...724L..39G. doi:10.1088/2041-8205/724/1/L39. S2CID 119121764.
- Gudipati, Murthy S.; Yang, Rui (1 September 2012). "In-situ Probing of Radiation-induced Processing of Organics in Astrophysical Ice Analogs – Novel Laser Desorption Laser Ionization Time-of-flight Mass Spectroscopic Studies". The Astrophysical Journal Letters. 756 (1): L24. Bibcode:2012ApJ...756L..24G. doi:10.1088/2041-8205/756/1/L24. S2CID 5541727.
- ^ Gallori, Enzo (June 2011). "Astrochemistry and the origin of genetic material". Rendiconti Lincei. 22 (2): 113–118. doi:10.1007/s12210-011-0118-4. S2CID 96659714. "Paper presented at the Symposium 'Astrochemistry: molecules in space and time' (Rome, 4–5 November 2010), sponsored by Fondazione 'Guido Donegani', Accademia Nazionale dei Lincei."
- Martins, Zita (February 2011). "Organic Chemistry of Carbonaceous Meteorites". Elements. 7 (1): 35–40. Bibcode:2011Eleme...7...35M. doi:10.2113/gselements.7.1.35.
- Martins, Zita; Botta, Oliver; Fogel, Marilyn L.; et al. (15 June 2008). "Extraterrestrial nucleobases in the Murchison meteorite". Earth and Planetary Science Letters. 270 (1–2): 130–136. arXiv:0806.2286. Bibcode:2008E&PSL.270..130M. doi:10.1016/j.epsl.2008.03.026. S2CID 14309508.
- Callahan, Michael P.; Smith, Karen E.; Cleaves, H. James II; et al. (23 August 2011). "Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases". PNAS. 108 (34): 13995–13998. Bibcode:2011PNAS..10813995C. doi:10.1073/pnas.1106493108. PMC 3161613. PMID 21836052.
- Steigerwald, John (8 August 2011). "NASA Researchers: DNA Building Blocks Can Be Made in Space". Goddard Space Flight Center. NASA. Archived from the original on 23 June 2015. Retrieved 23 June 2015.
- Kwok, Sun; Zhang, Yong (3 November 2011). "Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features". Nature. 479 (7371): 80–83. Bibcode:2011Natur.479...80K. doi:10.1038/nature10542. PMID 22031328. S2CID 4419859.
- Jørgensen, Jes K.; Favre, Cécile; Bisschop, Suzanne E.; et al. (2012). "Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA" (PDF). The Astrophysical Journal Letters. 757 (1): L4. arXiv:1208.5498. Bibcode:2012ApJ...757L...4J. doi:10.1088/2041-8205/757/1/L4. S2CID 14205612. Archived (PDF) from the original on 24 September 2015. Retrieved 23 June 2015.
- Furukawa, Yoshihiro; Chikaraishi, Yoshito; Ohkouchi, Naohiko; et al. (13 November 2019). "Extraterrestrial ribose and other sugars in primitive meteorites". PNAS. 116 (49): 24440–24445. Bibcode:2019PNAS..11624440F. doi:10.1073/pnas.1907169116. PMC 6900709. PMID 31740594.
- Oró, Joan; Kimball, Aubrey P. (February 1962). "Synthesis of purines under possible primitive earth conditions: II. Purine intermediates from hydrogen cyanide". Archives of Biochemistry and Biophysics. 96 (2): 293–313. doi:10.1016/0003-9861(62)90412-5. PMID 14482339.
- Cleaves II, Henderson (2010). "The origin of the biologically coded amino acids". Journal of Theoretical Biology. 263 (4): 490–498. Bibcode:2010JThBi.263..490C. doi:10.1016/j.jtbi.2009.12.014. PMID 20034500.
- Green, N. J., Russell, D. A., Tanner, S. H., Sutherland, J. D. (2023). "Prebiotic Synthesis of N-Formylaminonitriles and Derivatives in Formamide". Journal of the American Chemical Society. 145 (19): 10533–10541. Bibcode:2023JAChS.14510533G. doi:10.1021/jacs.2c13306. PMC 10197134. PMID 37146260.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Breslow, R. (1959). "On the Mechanism of the Formose Reaction". Tetrahedron Letters. 1 (21): 22–26. doi:10.1016/S0040-4039(01)99487-0.
- Oró, Joan (16 September 1961). "Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions". Nature. 191 (4794): 1193–1194. Bibcode:1961Natur.191.1193O. doi:10.1038/1911193a0. PMID 13731264. S2CID 4276712.
- ^ Saladino, Raffaele; Crestini, Claudia; Pino, Samanta; et al. (March 2012). "Formamide and the origin of life" (PDF). Physics of Life Reviews. 9 (1): 84–104. Bibcode:2012PhLRv...9...84S. doi:10.1016/j.plrev.2011.12.002. hdl:2108/85168. PMID 22196896. Archived (PDF) from the original on 27 January 2023. Retrieved 29 August 2019.
- ^ Saladino, Raffaele; Botta, Giorgia; Pino, Samanta; et al. (July 2012). "From the one-carbon amide formamide to RNA all the steps are prebiotically possible". Biochimie. 94 (7): 1451–1456. doi:10.1016/j.biochi.2012.02.018. hdl:11573/515604. PMID 22738728.
- Marlaire, Ruth, ed. (3 March 2015). "NASA Ames Reproduces the Building Blocks of Life in Laboratory". Ames Research Center. NASA. Archived from the original on 5 March 2015. Retrieved 5 March 2015.
- Ferus, Martin; Nesvorný, David; Šponer, Jiří; et al. (2015). "High-energy chemistry of formamide: A unified mechanism of nucleobase formation". PNAS. 112 (3): 657–662. Bibcode:2015PNAS..112..657F. doi:10.1073/pnas.1412072111. PMC 4311869. PMID 25489115.
- Basile, Brenda; Lazcano, Antonio; Oró, Joan (1984). "Prebiotic syntheses of purines and pyrimidines". Advances in Space Research. 4 (12): 125–131. Bibcode:1984AdSpR...4l.125B. doi:10.1016/0273-1177(84)90554-4. PMID 11537766.
- Orgel, Leslie E. (August 2004). "Prebiotic Adenine Revisited: Eutectics and Photochemistry". Origins of Life and Evolution of Biospheres. 34 (4): 361–369. Bibcode:2004OLEB...34..361O. doi:10.1023/B:ORIG.0000029882.52156.c2. PMID 15279171. S2CID 4998122.
- Robertson, Michael P.; Miller, Stanley L. (29 June 1995). "An efficient prebiotic synthesis of cytosine and uracil". Nature. 375 (6534): 772–774. Bibcode:1995Natur.375..772R. doi:10.1038/375772a0. PMID 7596408. S2CID 4351012.
- Fox, Douglas (1 February 2008). "Did Life Evolve in Ice?". Discover. Archived from the original on 30 June 2008. Retrieved 3 July 2008.
- Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L. (June 2000). "Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions". Icarus. 145 (2): 609–613. Bibcode:2000Icar..145..609L. doi:10.1006/icar.2000.6365. PMID 11543508.
- Menor-Salván, César; Ruiz-Bermejo, Marta; Guzmán, Marcelo I.; et al. (20 April 2009). "Synthesis of Pyrimidines and Triazines in Ice: Implications for the Prebiotic Chemistry of Nucleobases". Chemistry: A European Journal. 15 (17): 4411–4418. doi:10.1002/chem.200802656. PMID 19288488.
- Roy, Debjani; Najafian, Katayoun; von Ragué Schleyer, Paul (30 October 2007). "Chemical evolution: The mechanism of the formation of adenine under prebiotic conditions". PNAS. 104 (44): 17272–17277. Bibcode:2007PNAS..10417272R. doi:10.1073/pnas.0708434104. PMC 2077245. PMID 17951429.
- ^ Frenkel-Pinter, Moran; Samanta, Mousumi; Ashkenasy, Gonen; Leman, Luke J. (10 June 2020). "Prebiotic Peptides: Molecular Hubs in the Origin of Life". Chemical Reviews. 120 (11): 4707–4765. Bibcode:2020ChRv..120.4707F. doi:10.1021/acs.chemrev.9b00664. ISSN 0009-2665. PMID 32101414.
- Campbell, Thomas D.; Febrian, Rio; McCarthy, Jack T.; Kleinschmidt, Holly E.; Forsythe, Jay G.; Bracher, Paul J. (2019). "Prebiotic condensation through wet–dry cycling regulated by deliquescence". Nature Communications. 10 (1): 4508. Bibcode:2019NatCo..10.4508C. doi:10.1038/s41467-019-11834-1. PMC 6778215. PMID 31586058.
- Marshall-Bowman, Karina; Ohara, Shohei; Sverjensky, Dimitri A.; Hazen, Robert M.; Cleaves, H. James (October 2010). "Catalytic peptide hydrolysis by mineral surface: Implications for prebiotic chemistry". Geochimica et Cosmochimica Acta. 74 (20): 5852–5861. Bibcode:2010GeCoA..74.5852M. doi:10.1016/j.gca.2010.07.009. ISSN 0016-7037.
- Matreux, Thomas; Aikkila, Paula; Scheu, Bettina; Braun, Dieter; Mast, Christof B. (April 2024). "Heat flows enrich prebiotic building blocks and enhance their reactivity". Nature. 628 (8006): 110–116. Bibcode:2024Natur.628..110M. doi:10.1038/s41586-024-07193-7. ISSN 1476-4687. PMC 10990939. PMID 38570715.
- Paecht-Horowitz, Mella (1 January 1974). "The possible role of clays in prebiotic peptide synthesis". Origins of Life. 5 (1): 173–187. Bibcode:1974OrLi....5..173P. doi:10.1007/BF00927022. ISSN 1573-0875. PMID 4842069.
- Krasnokutski, S. A.; Chuang, K.-J.; Jäger, C.; Ueberschaar, N.; Henning, Th. (10 February 2022). "A pathway to peptides in space through the condensation of atomic carbon". Nature Astronomy. 6 (3): 381–386. arXiv:2202.12170. Bibcode:2022NatAs...6..381K. doi:10.1038/s41550-021-01577-9. ISSN 2397-3366.
- Krasnokutski, Serge A.; Jäger, Cornelia; Henning, Thomas; Geffroy, Claude; Remaury, Quentin B.; Poinot, Pauline (19 April 2024). "Formation of extraterrestrial peptides and their derivatives". Science Advances. 10 (16): eadj7179. arXiv:2405.00744. Bibcode:2024SciA...10J7179K. doi:10.1126/sciadv.adj7179. ISSN 2375-2548. PMC 11023503. PMID 38630826.
- Lancet, Doron (30 December 2014). "Systems Prebiology-Studies of the origin of Life". The Lancet Lab. Rehovot, Israel: Department of Molecular Genetics; Weizmann Institute of Science. Archived from the original on 26 June 2015. Retrieved 26 June 2015.
- Segré, Daniel; Ben-Eli, Dafna; Deamer, David W.; Lancet, Doron (February 2001). "The Lipid World" (PDF). Origins of Life and Evolution of Biospheres. 31 (1–2): 119–145. Bibcode:2001OLEB...31..119S. doi:10.1023/A:1006746807104. PMID 11296516. S2CID 10959497. Archived (PDF) from the original on 26 June 2015.
- ^ Chen, Irene A.; Walde, Peter (July 2010). "From Self-Assembled Vesicles to Protocells". Cold Spring Harbor Perspectives in Biology. 2 (7): a002170. doi:10.1101/cshperspect.a002170. PMC 2890201. PMID 20519344.
- Eigen, Manfred; Schuster, Peter (November 1977). "The Hypercycle. A Principle of Natural Self-Organization. Part A: Emergence of the Hypercycle" (PDF). Naturwissenschaften. 64 (11): 541–65. Bibcode:1977NW.....64..541E. doi:10.1007/bf00450633. PMID 593400. S2CID 42131267. Archived from the original (PDF) on 3 March 2016.
- Eigen, Manfred; Schuster, Peter (1978). "The Hypercycle. A Principle of Natural Self-Organization. Part B: The Abstract Hypercycle" (PDF). Naturwissenschaften. 65 (1): 7–41. Bibcode:1978NW.....65....7E. doi:10.1007/bf00420631. S2CID 1812273. Archived from the original (PDF) on 3 March 2016.
- Eigen, Manfred; Schuster, Peter (July 1978). "The Hypercycle. A Principle of Natural Self-Organization. Part C: The Realistic Hypercycle" (PDF). Naturwissenschaften. 65 (7): 341–369. Bibcode:1978NW.....65..341E. doi:10.1007/bf00439699. S2CID 13825356. Archived from the original (PDF) on 16 June 2016.
- Markovitch, Omer; Lancet, Doron (Summer 2012). "Excess Mutual Catalysis Is Required for Effective Evolvability". Artificial Life. 18 (3): 243–266. doi:10.1162/artl_a_00064. PMID 22662913. S2CID 5236043.
- Tessera, Marc (2011). "Origin of Evolution versus Origin of Life: A Shift of Paradigm". International Journal of Molecular Sciences. 12 (6): 3445–3458. doi:10.3390/ijms12063445. PMC 3131571. PMID 21747687. Special Issue: "Origin of Life 2011"
- "Protocells". Exploring Life's Origins: A Virtual Exhibit. Arlington County, Virginia: National Science Foundation. Archived from the original on 28 February 2014. Retrieved 13 September 2023.
- ^ Chen, Irene A. (8 December 2006). "The Emergence of Cells During the Origin of Life". Science. 314 (5805): 1558–1559. doi:10.1126/science.1137541. PMID 17158315.
- Zimmer, Carl (26 June 2004). "What Came Before DNA?". Discover. Archived from the original on 19 March 2014.
- Onsager, Lars (1931). "Reciprocal Relations in Irreversible Processes I". Physical Review. 37 (4): 405. Bibcode:1931PhRv...37..405O. doi:10.1103/PhysRev.37.405.
- Onsager, Lars (1931). "Reciprocal Relations in Irreversible Processes II". Physical Review. 38 (12): 2265. Bibcode:1931PhRv...38.2265O. doi:10.1103/PhysRev.38.2265.
- Prigogine, Ilya (1967). An Introduction to the Thermodynamics of Irreversible Processes. New York: Wiley.
- Shapiro, Robert (June 2007). "A Simpler Origin for Life". Scientific American. 296 (6): 46–53. Bibcode:2007SciAm.296f..46S. doi:10.1038/scientificamerican0607-46. PMID 17663224. Archived from the original on 14 June 2015.
- Chang 2007
- ^ Lane, Nick (2015). The Vital Question: Why Is Life The Way It Is?. Profile Books. pp. 129–140. ISBN 978-1-78125-036-5.
- Jordan, Sean F.; Nee, Eloise; Lane, Nick (6 December 2019). "Isoprenoids enhance the stability of fatty acid membranes at the emergence of life potentially leading to an early lipid divide". Interface Focus. 9 (6): 20190067. doi:10.1098/rsfs.2019.0067. PMC 6802135. PMID 31641436.
- Mayer, Christian; Schreiber, Ulrich; Dávila, María J.; Schmitz, Oliver J.; Bronja, Amela; Meyer, Martin; Klein, Julia; Meckelmann, Sven W. (2018). "Molecular Evolution in a Peptide-Vesicle System". Life. 8 (2): 16. Bibcode:2018Life....8...16M. doi:10.3390/life8020016. ISSN 2075-1729. PMC 6027363. PMID 29795023.
- Mayer, Christian; Schreiber, Ulrich; Dávila, María J. (1 June 2015). "Periodic Vesicle Formation in Tectonic Fault Zones—an Ideal Scenario for Molecular Evolution". Origins of Life and Evolution of Biospheres. 45 (1): 139–148. Bibcode:2015OLEB...45..139M. doi:10.1007/s11084-015-9411-z. ISSN 1573-0875. PMC 4457167. PMID 25716918.
- Dávila, María J.; Mayer, Christian (2022). "Membrane Structure Obtained in an Experimental Evolution Process". Life. 12 (2): 145. Bibcode:2022Life...12..145D. doi:10.3390/life12020145. ISSN 2075-1729. PMC 8875328. PMID 35207433.
- Mayer, Christian (2022). "Spontaneous Formation of Functional Structures in Messy Environments". Life. 12 (5): 720. Bibcode:2022Life...12..720M. doi:10.3390/life12050720. ISSN 2075-1729. PMC 9148140. PMID 35629387.
- Dávila, María J.; Mayer, Christian (2023). "Structural Phenomena in a Vesicle Membrane Obtained through an Evolution Experiment: A Study Based on MD Simulations". Life. 13 (8): 1735. Bibcode:2023Life...13.1735D. doi:10.3390/life13081735. ISSN 2075-1729. PMC 10455627. PMID 37629592.
- Mayer, Christian (18 January 2020). "Life in The Context of Order and Complexity". Life. 10 (1): 5. Bibcode:2020Life...10....5M. doi:10.3390/life10010005. ISSN 2075-1729. PMC 7175320. PMID 31963637.
- Sharov, Alexei A.; Gordon, Richard (2018). "Life Before Earth". Habitability of the Universe Before Earth: Life Before Earth. Astrobiology Exploring Life on Earth and Beyond. Academic Press. pp. 265–296. doi:10.1016/B978-0-12-811940-2.00011-3. ISBN 978-0-12-811940-2. S2CID 117048600. Archived from the original on 30 April 2022. Retrieved 30 April 2022.
- Ladyman, J.; Lambert, J.; Weisner, K. B. (2013). "What is a Complex System?". European Journal of the Philosophy of Science. 3: 33–67. doi:10.1007/s13194-012-0056-8. S2CID 18787276.
- Esposito, M.; Lindenberg, Katja; Van den Broeck, C. (2010). "Entropy production as correlation between system and reservoir". New Journal of Physics. 12 (1): 013013. arXiv:0908.1125. Bibcode:2010NJPh...12a3013E. doi:10.1088/1367-2630/12/1/013013. S2CID 26657293.
- Bar-Nun, A.; Bar-Nun, N.; Bauer, S. H.; Sagan, Carl (24 April 1970). "Shock Synthesis of Amino Acids in Simulated Primitive Environments". Science. 168 (3930): 470–473. Bibcode:1970Sci...168..470B. doi:10.1126/science.168.3930.470. PMID 5436082. S2CID 42467812.
- Anbar, Michael (27 September 1968). "Cavitation during Impact of Liquid Water on Water: Geochemical Implications". Science. 161 (3848): 1343–1344. Bibcode:1968Sci...161.1343A. doi:10.1126/science.161.3848.1343. PMID 17831346.
- Dharmarathne, Leena; Grieser, Franz (7 January 2016). "Formation of Amino Acids on the Sonolysis of Aqueous Solutions Containing Acetic Acid, Methane, or Carbon Dioxide, in the Presence of Nitrogen Gas". The Journal of Physical Chemistry A. 120 (2): 191–199. Bibcode:2016JPCA..120..191D. doi:10.1021/acs.jpca.5b11858. PMID 26695890.
- Patehebieke, Yeersen; Zhao, Ze-Run; Wang, Su; Xu, Hao-Xing; Chen, Qian-Qian; Wang, Xiao (2021). "Cavitation as a plausible driving force for the prebiotic formation of N9 purine nucleosides". Cell Reports Physical Science. 2 (3): 100375. Bibcode:2021CRPS....200375P. doi:10.1016/j.xcrp.2021.100375. S2CID 233662126.
- Kalson, Natan-Haim; Furman, David; Zeiri, Yehuda (11 September 2017). "Cavitation-Induced Synthesis of Biogenic Molecules on Primordial Earth". ACS Central Science. 3 (9): 1041–1049. doi:10.1021/acscentsci.7b00325. PMC 5620973. PMID 28979946. S2CID 21409351.
- Muller, Anthonie W. J. (1995). "Were the first organisms heat engines? A new model for biogenesis and the early evolution of biological energy conversion". Progress in Biophysics and Molecular Biology. 63 (2): 193–231. doi:10.1016/0079-6107(95)00004-7. PMID 7542789.
- Muller, Anthonie W. J.; Schulze-Makuch, Dirk (2006). "Thermal energy and the origin of life". Origins of Life and Evolution of Biospheres. 36 (2): 77–189. Bibcode:2006OLEB...36..177M. doi:10.1007/s11084-005-9003-4. PMID 16642267. S2CID 22179552.
- Junge, Wolfgang; Nelson, Nathan (2 June 2015). "ATP Synthase". Annual Review of Biochemistry. 84 (1): 631–657. doi:10.1146/annurev-biochem-060614-034124. PMID 25839341.
- ^ Damer, Bruce; Deamer, David (1 April 2020). "The Hot Spring Hypothesis for an Origin of Life". Astrobiology. 20 (4): 429–452. Bibcode:2020AsBio..20..429D. doi:10.1089/ast.2019.2045. PMC 7133448. PMID 31841362.
- d'Ischia, Marco; Manini, Paola; Moracci, Marco; et al. (21 August 2019). "Astrochemistry and Astrobiology: Materials Science in Wonderland?". International Journal of Molecular Sciences. 20 (17): 4079. doi:10.3390/ijms20174079. PMC 6747172. PMID 31438518.
- Carey, Bjorn (18 October 2005). "Life's Building Blocks 'Abundant in Space'". Space.com. Retrieved 3 March 2014.
- Hudgins, Douglas M.; Bauschlicher, Jr, Charles W.; Allamandola, L. J. (10 October 2005). "Variations in the Peak Position of the 6.2 μm Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population". Astrophysical Journal. 632 (1): 316–332. Bibcode:2005ApJ...632..316H. CiteSeerX 10.1.1.218.8786. doi:10.1086/432495. S2CID 7808613.
- Allamandola, Louis; et al. (13 April 2011). "Cosmic Distribution of Chemical Complexity". NASA. Archived from the original on 27 February 2014. Retrieved 3 March 2014.
- Clavin, Whitney (10 February 2015). "Why Comets Are Like Deep Fried Ice Cream". NASA. Retrieved 10 February 2015.
- Platts, Simon Nicholas, "The PAH World - Discotic polynuclear aromatic compounds as a mesophase scaffolding at the origin of life"
- Benner, S. A.; Bell, E. A.; Biondi, E.; Brasser, R.; Carell, T.; Kim, H.-J.; Mojzsis, S. J.; Omran, A.; Pasek, M. A.; Trail, D. (2020). "When Did Life Likely Emerge on Earth in an RNA-First Process?". ChemSystemsChem. 2 (2). arXiv:1908.11327. Bibcode:2020CSysC...2...35B. doi:10.1002/syst.201900035.
- * Copley, Shelley D.; Smith, Eric; Morowitz, Harold J. (December 2007). "The origin of the RNA world: Co-evolution of genes and metabolism" (PDF). Bioorganic Chemistry. 35 (6): 430–443. doi:10.1016/j.bioorg.2007.08.001. PMID 17897696. Archived (PDF) from the original on 5 September 2013. Retrieved 8 June 2015.
The proposal that life on Earth arose from an RNA world is widely accepted.
- Orgel, Leslie E. (April 2003). "Some consequences of the RNA world hypothesis". Origins of Life and Evolution of Biospheres. 33 (2): 211–218. Bibcode:2003OLEB...33..211O. doi:10.1023/A:1024616317965. PMID 12967268. S2CID 32779859.
It now seems very likely that our familiar DNA/RNA/protein world was preceded by an RNA world...
- Robertson & Joyce 2012: "There is now strong evidence indicating that an RNA World did indeed exist before DNA- and protein-based life."
- Neveu, Kim & Benner 2013: " has broad support within the community today."
- Orgel, Leslie E. (April 2003). "Some consequences of the RNA world hypothesis". Origins of Life and Evolution of Biospheres. 33 (2): 211–218. Bibcode:2003OLEB...33..211O. doi:10.1023/A:1024616317965. PMID 12967268. S2CID 32779859.
- ^ Robertson, Michael P.; Joyce, Gerald F. (May 2012). "The origins of the RNA world". Cold Spring Harbor Perspectives in Biology. 4 (5): a003608. doi:10.1101/cshperspect.a003608. PMC 3331698. PMID 20739415.
- ^ Cech, Thomas R. (July 2012). "The RNA Worlds in Context". Cold Spring Harbor Perspectives in Biology. 4 (7): a006742. doi:10.1101/cshperspect.a006742. PMC 3385955. PMID 21441585.
- Pearce, Ben K. D.; Pudritz, Ralph E.; Semenov, Dmitry A.; Henning, Thomas K. (24 October 2017). "Origin of the RNA world: The fate of nucleobases in warm little ponds". PNAS. 114 (43): 11327–11332. arXiv:1710.00434. Bibcode:2017PNAS..11411327P. doi:10.1073/pnas.1710339114. PMC 5664528. PMID 28973920.
- Yarus, Michael (April 2011). "Getting Past the RNA World: The Initial Darwinian Ancestor". Cold Spring Harbor Perspectives in Biology. 3 (4): a003590. doi:10.1101/cshperspect.a003590. PMC 3062219. PMID 20719875.
- Voet & Voet 2004, p. 29
- Fox, George.E. (9 June 2010). "Origin and evolution of the ribosome". Cold Spring Harbor Perspectives in Biology. 2 (9(a003483)): a003483. doi:10.1101/cshperspect.a003483. PMC 2926754. PMID 20534711.
- Neveu, Marc; Kim, Hyo-Joong; Benner, Steven A. (22 April 2013). "The 'Strong' RNA World Hypothesis: Fifty Years Old". Astrobiology. 13 (4): 391–403. Bibcode:2013AsBio..13..391N. doi:10.1089/ast.2012.0868. PMID 23551238.
- Gilbert, Walter (20 February 1986). "Origin of life: The RNA world". Nature. 319 (6055): 618. Bibcode:1986Natur.319..618G. doi:10.1038/319618a0. S2CID 8026658.
- Orgel, Leslie E. (October 1994). "The origin of life on Earth". Scientific American. 271 (4): 76–83. Bibcode:1994SciAm.271d..76O. doi:10.1038/scientificamerican1094-76. PMID 7524147.
- Lincoln, Tracey A.; Joyce, Gerald F. (27 February 2009). "Self-Sustained Replication of an RNA Enzyme". Science. 323 (5918): 1229–1232. Bibcode:2009Sci...323.1229L. doi:10.1126/science.1167856. PMC 2652413. PMID 19131595.
- Joyce, Gerald F. (2009). "Evolution in an RNA world". Cold Spring Harbor Perspectives in Biology. 74 (Evolution: The Molecular Landscape): 17–23. doi:10.1101/sqb.2009.74.004. PMC 2891321. PMID 19667013.
- Szostak, Jack W. (5 February 2015). "The Origins of Function in Biological Nucleic Acids, Proteins, and Membranes". Chevy Chase, Maryland: Howard Hughes Medical Institute. Archived from the original on 14 July 2015. Retrieved 16 June 2015.
- Bernstein, Harris; Byerly, Henry C.; Hopf, Frederick A.; et al. (June 1983). "The Darwinian Dynamic". The Quarterly Review of Biology. 58 (2): 185–207. doi:10.1086/413216. JSTOR 2828805. S2CID 83956410.
- Michod 1999
- Palasek, Stan (23 May 2013). "Primordial RNA Replication and Applications in PCR Technology". arXiv:1305.5581v1 .
- Vlassov, Alexander V.; Kazakov, Sergei A.; Johnston, Brian H.; et al. (August 2005). "The RNA World on Ice: A New Scenario for the Emergence of RNA Information". Journal of Molecular Evolution. 61 (2): 264–273. Bibcode:2005JMolE..61..264V. doi:10.1007/s00239-004-0362-7. PMID 16044244. S2CID 21096886.
- Nussinov, Mark D.; Otroshchenko, Vladimir A.; Santoli, Salvatore (1997). "The emergence of the non-cellular phase of life on the fine-grained clayish particles of the early Earth's regolith". BioSystems. 42 (2–3): 111–118. Bibcode:1997BiSys..42..111N. doi:10.1016/S0303-2647(96)01699-1. PMID 9184757.
- Kühnlein, Alexandra; Lanzmich, Simon A.; Brun, Dieter (2 March 2021). "tRNA sequences can assemble into a replicator". eLife. 10. doi:10.7554/eLife.63431. PMC 7924937. PMID 33648631.
- Noller, Harry F. (April 2012). "Evolution of protein synthesis from an RNA world". Cold Spring Harbor Perspectives in Biology. 4 (4): a003681. Bibcode:2012CSHPB...4.3681N. doi:10.1101/cshperspect.a003681. PMC 3312679. PMID 20610545.
- Koonin, Eugene V. (31 May 2007). "The cosmological model of eternal inflation and the transition from chance to biological evolution in the history of life". Biology Direct. 2: 15. doi:10.1186/1745-6150-2-15. PMC 1892545. PMID 17540027.
- ^ Tamura, K.; Alexander, R. W. (1 May 2004). "Peptide synthesis through evolution". Cellular and Molecular Life Sciences. 61 (11): 1317–1330. doi:10.1007/s00018-004-3449-9. ISSN 1420-9071. PMC 11138682. PMID 15170510.
- Tamura, Koji; Schimmel, Paul (22 July 2003). "Peptide synthesis with a template-like RNA guide and aminoacyl phosphate adaptors". Proceedings of the National Academy of Sciences. 100 (15): 8666–8669. Bibcode:2003PNAS..100.8666T. doi:10.1073/pnas.1432909100. ISSN 0027-8424. PMC 166369. PMID 12857953.
- ^ Pressman, Abe D.; Liu, Ziwei; Janzen, Evan; Blanco, Celia; Müller, Ulrich F.; Joyce, Gerald F.; Pascal, Robert; Chen, Irene A. (17 April 2019). "Mapping a Systematic Ribozyme Fitness Landscape Reveals a Frustrated Evolutionary Network for Self-Aminoacylating RNA". Journal of the American Chemical Society. 141 (15): 6213–6223. Bibcode:2019JAChS.141.6213P. doi:10.1021/jacs.8b13298. ISSN 0002-7863. PMC 6548421. PMID 30912655.
- Tyagi, Sanjay; Ponnamperuma, Cyril (1 May 1990). "Nonrandomness in prebiotic peptide synthesis". Journal of Molecular Evolution. 30 (5): 391–399. Bibcode:1990JMolE..30..391T. doi:10.1007/BF02101111. ISSN 1432-1432. PMID 2111852.
- Keefe, Anthony D.; Szostak, Jack W. (2001). "Functional proteins from a random-sequence library". Nature. 410 (6829): 715–718. Bibcode:2001Natur.410..715K. doi:10.1038/35070613. PMC 4476321. PMID 11287961.
- Tong, Cher Ling; Lee, Kun-Hwa; Seelig, Burckhard (June 2021). "De novo proteins from random sequences through in vitro evolution". Current Opinion in Structural Biology. 68: 129–134. Bibcode:2021COStB..68..129T. doi:10.1016/j.sbi.2020.12.014. PMC 8222087. PMID 33517151.
- Boone, David R.; Castenholz, Richard W.; Garrity, George M., eds. (2001). The Archaea and the Deeply Branching and Phototrophic Bacteria. Bergey's Manual of Systematic Bacteriology. Springer. ISBN 978-0-387-21609-6. Archived from the original on 25 December 2014.
- Woese, C. R.; Fox, G. E. (1977). "Phylogenetic structure of the prokaryotic domain: the primary kingdoms". PNAS. 7 (11): 5088–5090. Bibcode:1977PNAS...74.5088W. doi:10.1073/pnas.74.11.5088. PMC 432104. PMID 270744.
- Valas, R. E.; Bourne, P. E. (2011). "The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon". Biology Direct. 6: 16. doi:10.1186/1745-6150-6-16. PMC 3056875. PMID 21356104.
- Cavalier-Smith, Thomas (2006). "Rooting the tree of life by transition analyses". Biology Direct. 1: 19. doi:10.1186/1745-6150-1-19. PMC 1586193. PMID 16834776.
- "Early life liked it hot". Nature. 535 (7613): 468. 2016. doi:10.1038/535468b. S2CID 49905802.
- Gogarten, Johann Peter; Deamer, David (25 November 2016). "Is LUCA a thermophilic progenote?". Nature Microbiology. 1 (12): 16229. doi:10.1038/nmicrobiol.2016.229. PMID 27886195. S2CID 205428194. Archived from the original on 3 April 2020. Retrieved 21 September 2022.
- Catchpole, Ryan; Forterre, Patrick (2019). "The evolution of Reverse Gyrase suggests a non-hyperthermophilic Last Universal Common Ancestor". Molecular Biology and Evolution. 36 (12): 2737–2747. doi:10.1093/molbev/msz180. PMC 6878951. PMID 31504731. Archived from the original on 27 January 2023. Retrieved 18 September 2022.
- Berkemer, Sarah J.; McGlynn, Shawn E (8 August 2020). "A New Analysis of Archaea–Bacteria Domain Separation: Variable Phylogenetic Distance and the Tempo of Early Evolution". Molecular Biology and Evolution. 37 (8): 2332–2340. doi:10.1093/molbev/msaa089. PMC 7403611. PMID 32316034. Archived from the original on 27 January 2023. Retrieved 21 September 2022.
- Koonin, E. V. (2003). "Comparative genomics, minimal gene-sets and the last universal common ancestor". Nature Reviews. Microbiology. 1 (2): 127–136. doi:10.1038/nrmicro751. PMID 15035042.
- Hoffmann, Geoffrey W. (25 June 1974). "On the origin of the genetic code and the stability of the translation apparatus". Journal of Molecular Biology. 86 (2): 349–362. doi:10.1016/0022-2836(74)90024-2. PMID 4414916.
- Orgel, Leslie E. (April 1963). "The Maintenance of the Accuracy of Protein Synthesis and its Relevance to Ageing". PNAS. 49 (4): 517–521. Bibcode:1963PNAS...49..517O. doi:10.1073/pnas.49.4.517. PMC 299893. PMID 13940312.
- Hoffmann, Geoffrey W. (October 1975). "The Stochastic Theory of the Origin of the Genetic Code". Annual Review of Physical Chemistry. 26: 123–144. Bibcode:1975ARPC...26..123H. doi:10.1146/annurev.pc.26.100175.001011.
- Harrison, Stuart A.; Palmeira, Raquel Nunes; Halpern, Aaron; Lane, Nick (1 November 2022). "A biophysical basis for the emergence of the genetic code in protocells". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1863 (8): 148597. doi:10.1016/j.bbabio.2022.148597. PMID 35868450. S2CID 250707510.
- Harrison, Stuart A.; Lane, Nick (12 December 2018). "Life as a guide to prebiotic nucleotide synthesis". Nature Communications. 9 (1): 5176. Bibcode:2018NatCo...9.5176H. doi:10.1038/s41467-018-07220-y. PMC 6289992. PMID 30538225.
- Cantine, Marjorie D.; Fournier, Gregory P. (1 March 2018). "Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor". Origins of Life and Evolution of Biospheres. 48 (1): 35–54. Bibcode:2018OLEB...48...35C. doi:10.1007/s11084-017-9542-5. hdl:1721.1/114219. PMID 28685374. S2CID 254888920. Archived from the original on 31 January 2024.
- Mat, Wai-Kin (1 May 2008). "The genomics of LUCA" (PDF). Frontiers in Bioscience. 13 (14): 5605–5613. doi:10.2741/3103. PMID 18508609. Archived (PDF) from the original on 16 June 2022. Retrieved 8 December 2023.
- Brasier, M. D. (2012). Secret Chambers: The Inside Story of Cells and Complex Life. Oxford University Press. p. 298.
- Ward, Peter & Kirschvink, Joe, op cit, p. 42
- ^ Colín-García, M.; Heredia, A.; Cordero, G.; et al. (2016). "Hydrothermal vents and prebiotic chemistry: a review". Boletín de la Sociedad Geológica Mexicana. 68 (3): 599–620. doi:10.18268/BSGM2016v68n3a13. Archived from the original on 18 August 2017.
- Schirber, Michael (24 June 2014). "Hydrothermal Vents Could Explain Chemical Precursors to Life". NASA Astrobiology: Life in the Universe. NASA. Archived from the original on 29 November 2014. Retrieved 19 June 2015.
- ^ Martin, William; Russell, Michael J. (29 January 2003). "On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells". Philosophical Transactions of the Royal Society B. 358 (1429): 59–83, discussion 83–85. doi:10.1098/rstb.2002.1183. PMC 1693102. PMID 12594918.
- Lane 2009
- Usher, Oli (27 April 2015). "Chemistry of seabed's hot vents could explain emergence of life" (Press release). University College London. Archived from the original on 20 June 2015. Retrieved 19 June 2015.
- Roldan, Alberto; Hollingsworth, Nathan; Roffey, Anna; et al. (May 2015). "Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions". Chemical Communications. 51 (35): 7501–7504. doi:10.1039/C5CC02078F. PMID 25835242. Archived from the original on 20 June 2015. Retrieved 19 June 2015.
- Baross, J. A.; Hoffman, S. E. (1985). "Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life". Origins of Life and Evolution of Biospheres. 15 (4): 327–345. Bibcode:1985OrLi...15..327B. doi:10.1007/bf01808177. S2CID 4613918.
- Russell, M. J.; Hall, A. J. (1997). "The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front". Journal of the Geological Society. 154 (3): 377–402. Bibcode:1997JGSoc.154..377R. doi:10.1144/gsjgs.154.3.0377. PMID 11541234. S2CID 24792282.
- Amend, J. P.; LaRowe, D. E.; McCollom, T. M.; Shock, E. L. (2013). "The energetics of organic synthesis inside and outside the cell". Philosophical Transactions of the Royal Society B. 368 (1622): 20120255. doi:10.1098/rstb.2012.0255. PMC 3685458. PMID 23754809.
- Shock, E. L.; Boyd, E. S. (2015). "Geomicrobiology and microbial geochemistry:principles of geobiochemistry". Elements. 11: 389–394. doi:10.2113/gselements.11.6.395.
- Martin, W.; Russell, M. J. (2007). "On the origin of biochemistry at an alkaline hydrothermal vent". Philosophical Transactions of the Royal Society B. 362 (1486): 1887–1925. doi:10.1098/rstb.2006.1881. PMC 2442388. PMID 17255002.
- Lane, Nick; Martin, William F. (21 December 2012). "The Origin of Membrane Bioenergetics". Cell. 151 (7): 1406–1416. doi:10.1016/j.cell.2012.11.050. PMID 23260134. S2CID 15028935.
- Baaske, Philipp; Weinert, Franz M.; Duhr, Stefan; Lemke, Kono H.; Russell, Michael J.; Braun, Dieter (29 May 2007). "Extreme accumulation of nucleotides in simulated hydrothermal pore systems". Proceedings of the National Academy of Sciences. 104 (22): 9346–9351. Bibcode:2007PNAS..104.9346B. doi:10.1073/pnas.0609592104. PMC 1890497. PMID 17494767.
- Nunes Palmeira, Raquel; Colnaghi, Marco; Harrison, Stuart A.; Pomiankowski, Andrew; Lane, Nick (9 November 2022). "The limits of metabolic heredity in protocells". Proceedings of the Royal Society B: Biological Sciences. 289 (1986). doi:10.1098/rspb.2022.1469. PMC 9653231. PMID 36350219.
- Woese, Carl R. (1987). "Bacterial evolution". Microbiological Reviews. 51.2 (1987) (2): 221–271. doi:10.1128/mr.51.2.221-271.1987. PMC 373105. PMID 2439888. S2CID 734579.
- Russell, Michael J.; Hall, Allan J. (2006), "The onset and early evolution of life", Evolution of Early Earth's Atmosphere, Hydrosphere, and Biosphere - Constraints from Ore Deposits, Geological Society of America, doi:10.1130/2006.1198(01) (inactive 11 December 2024), ISBN 9780813711980, archived from the original on 31 January 2024
{{citation}}
: CS1 maint: DOI inactive as of December 2024 (link) - Boussau, Bastien; Blanquart, Samuel; Necsulea, Anamaria; Lartillot, Nicolas; Gouy, Manolo (December 2008). "Parallel adaptations to high temperatures in the Archaean eon". Nature. 456 (7224): 942–945. Bibcode:2008Natur.456..942B. doi:10.1038/nature07393. PMID 19037246. S2CID 4348746. Archived from the original on 16 December 2023. Retrieved 8 December 2023.
- ^ Galtier, Nicolas; Tourasse, Nicolas; Gouy, Manolo (8 January 1999). "A Nonhyperthermophilic Common Ancestor to Extant Life Forms". Science. 283 (5399): 220–221. doi:10.1126/science.283.5399.220. PMID 9880254. Archived from the original on 31 January 2024. Retrieved 8 December 2023.
- Kelley, Deborah S.; Karson, Jeffrey A.; Blackman, Donna K.; Früh-Green, Gretchen L.; Butterfield, David A.; Lilley, Marvin D.; Olson, Eric J.; Schrenk, Matthew O.; Roe, Kevin K.; Lebon, Geoff T.; Rivizzigno, Pete (July 2001). "An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N". Nature. 412 (6843): 145–149. Bibcode:2001Natur.412..145K. doi:10.1038/35084000. PMID 11449263. S2CID 4407013. Archived from the original on 31 January 2024.
- ^ Ehrenfreund, P.; Irvine, W.; Becker, L.; Blank, J.; Brucato, J. R.; et al. (August 2002). "Astrophysical and astrochemical insights into the origin of life". Reports on Progress in Physics. 65 (10): 1427. Bibcode:2002RPPh...65.1427E. doi:10.1088/0034-4885/65/10/202. S2CID 250904448.
- Chyba, C.F.; Chyba, C.F.; Hand, K.P. (2006). "Comets and Prebiotic Organic Molecules on Early Earth". Comets and the Origin and Evolution of Life. Advances in Astrobiology and Biogeophysics. Springer Berlin Heidelberg. pp. 169–206. doi:10.1007/3-540-33088-7_6. ISBN 978-3-540-33086-8. Archived from the original on 31 January 2024.
- Chatterjee, Sankar (2023), Chatterjee, Sankar (ed.), "The Cradle of Life", From Stardust to First Cells: The Origin and Evolution of Early Life, Cham: Springer International Publishing, pp. 43–66, doi:10.1007/978-3-031-23397-5_6, ISBN 978-3-031-23397-5, archived from the original on 31 January 2024
- Deamer, David W. (7 February 2019). "Prospects for Life on Other Planets". Assembling Life. Oxford University Press. doi:10.1093/oso/9780190646387.003.0017. ISBN 978-0-19-064638-7. Archived from the original on 31 January 2024.
- Pearce, Ben K. D.; Pudritz, Ralph E.; Semenov, Dmitry A.; Henning, Thomas K. (2 October 2017). "Origin of the RNA world: The fate of nucleobases in warm little ponds". Proceedings of the National Academy of Sciences. 114 (43): 11327–11332. arXiv:1710.00434. Bibcode:2017PNAS..11411327P. doi:10.1073/pnas.1710339114. PMC 5664528. PMID 28973920.
- ^ Deamer, David (10 February 2021). "Where Did Life Begin? Testing Ideas in Prebiotic Analogue Conditions". Life. 11 (2): 134. Bibcode:2021Life...11..134D. doi:10.3390/life11020134. PMC 7916457. PMID 33578711.
- Jordan, Sean F.; Rammu, Hanadi; Zheludev, Ivan N.; Hartley, Andrew M.; Maréchal, Amandine; Lane, Nick (2019). "Promotion of protocell self-assembly from mixed amphiphiles at the origin of life". Nature Ecology & Evolution. 3 (12): 1705–1714. Bibcode:2019NatEE...3.1705J. doi:10.1038/s41559-019-1015-y. PMID 31686020.
- Korenaga, Jun (November 2021). "Was There Land on the Early Earth?". Life. 11 (11): 1142. Bibcode:2021Life...11.1142K. doi:10.3390/life11111142. PMC 8623345. PMID 34833018.
- Powner, Matthew W.; Gerland, Béatrice; Sutherland, John D. (May 2009). "Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions". Nature. 459 (7244): 239–242. Bibcode:2009Natur.459..239P. doi:10.1038/nature08013. PMID 19444213. S2CID 4412117. Archived from the original on 12 November 2023. Retrieved 8 December 2023.
- Zahnle, Kevin; Arndt, Nick; Cockell, Charles; Halliday, Alex; Nisbet, Euan; Selsis, Franck; Sleep, Norman H. (1 March 2007). "Emergence of a Habitable Planet". Space Science Reviews. 129 (1): 35–78. Bibcode:2007SSRv..129...35Z. doi:10.1007/s11214-007-9225-z. S2CID 12006144. Archived from the original on 31 January 2024.
- Woese, C R (June 1987). "Bacterial evolution". Microbiological Reviews. 51 (2): 221–271. doi:10.1128/mr.51.2.221-271.1987. PMC 373105. PMID 2439888.
- ^ Mulkidjanian, Armen Y.; Bychkov, Andrew Yu.; Dibrova, Daria V.; Galperin, Michael Y.; Koonin, Eugene V. (3 April 2012). "Origin of first cells at terrestrial, anoxic geothermal fields". Proceedings of the National Academy of Sciences. 109 (14): E821-30. Bibcode:2012PNAS..109E.821M. doi:10.1073/pnas.1117774109. PMC 3325685. PMID 22331915.
- Chandru, Kuhan; Guttenberg, Nicholas; Giri, Chaitanya; et al. (31 May 2018). "Simple prebiotic synthesis of high diversity dynamic combinatorial polyester libraries". Communications Chemistry. 1 (1): 30. Bibcode:2018CmChe...1...30C. doi:10.1038/s42004-018-0031-1.
- Forsythe, Jay G.; Yu, Sheng-Sheng; Mamajanov, Irena; et al. (17 August 2015). "Ester-Mediated Amide Bond Formation Driven by Wet–Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth". Angewandte Chemie International Edition in English. 54 (34): 9871–9875. Bibcode:2015AngCh..54.9871F. doi:10.1002/anie.201503792. PMC 4678426. PMID 26201989.
- Patel, Bhavesh H.; Percivalle, Claudia; Ritson, Dougal J.; Duffy, Colm. D.; Sutherland, John D. (16 March 2015). "Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism". Nature Chemistry. 7 (4): 301–307. Bibcode:2015NatCh...7..301P. doi:10.1038/nchem.2202. PMC 4568310. PMID 25803468.
- Catling, David C.; Zahnle, Kevin J. (28 February 2020). "The Archean atmosphere". Science Advances. 6 (9): eaax1420. Bibcode:2020SciA....6.1420C. doi:10.1126/sciadv.aax1420. PMC 7043912. PMID 32133393.
- Miller, Stanley L.; Lazcano, Antonio (December 1995). "The origin of life?did it occur at high temperatures?". Journal of Molecular Evolution. 41 (6): 689–692. Bibcode:1995JMolE..41..689M. doi:10.1007/bf00173146. hdl:2060/19980211388. PMID 11539558. S2CID 25141419. Archived from the original on 31 January 2024.
- Forterre, Patrick; Bergerat, Agnes; Lopex-Garcia, Purificacion (May 1996). "The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea". FEMS Microbiology Reviews. 18 (2–3): 237–248. doi:10.1111/j.1574-6976.1996.tb00240.x. PMID 8639331. S2CID 6001830.
- Brochier-Armanet, Céline; Forterre, Patrick (May 2006). "Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers". Archaea. 2 (2): 83–93. doi:10.1155/2006/582916. PMC 2686386. PMID 17350929.
- Feulner, Georg (June 2012). "The faint young Sun problem". Reviews of Geophysics. 50 (2). arXiv:1204.4449. Bibcode:2012RvGeo..50.2006F. doi:10.1029/2011RG000375. S2CID 119248267. Archived from the original on 8 December 2023. Retrieved 8 December 2023.
- Bada, J. L.; Bigham, C.; Miller, S. L. (15 February 1994). "Impact melting of frozen oceans on the early Earth: Implications for the origin of life". Proceedings of the National Academy of Sciences. 91 (4): 1248–1250. Bibcode:1994PNAS...91.1248B. doi:10.1073/pnas.91.4.1248. PMC 43134. PMID 11539550.
- Monnard, Pierre-Alain; Apel, Charles L.; Kanavarioti, Anastassia; Deamer, David W. (June 2002). "Influence of Ionic Inorganic Solutes on Self-Assembly and Polymerization Processes Related to Early Forms of Life: Implications for a Prebiotic Aqueous Medium". Astrobiology. 2 (2): 139–152. Bibcode:2002AsBio...2..139M. doi:10.1089/15311070260192237. PMID 12469365. Archived from the original on 31 January 2024. Retrieved 8 December 2023.
- Attwater, James; Wochner, Aniela; Holliger, Philipp (December 2013). "In-ice evolution of RNA polymerase ribozyme activity". Nature Chemistry. 5 (12): 1011–1018. Bibcode:2013NatCh...5.1011A. doi:10.1038/nchem.1781. PMC 3920166. PMID 24256864.
- Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L. (1 June 2000). "Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions". Icarus. 145 (2): 609–613. Bibcode:2000Icar..145..609L. doi:10.1006/icar.2000.6365. PMID 11543508.
- Moulton, Vincent; Gardner, Paul P.; Pointon, Robert F.; Creamer, Lawrence K.; Jameson, Geoffrey B.; Penny, David (1 October 2000). "RNA Folding Argues Against a Hot-Start Origin of Life". Journal of Molecular Evolution. 51 (4): 416–421. Bibcode:2000JMolE..51..416M. doi:10.1007/s002390010104. PMID 11040293. S2CID 20787323. Archived from the original on 31 January 2024.
- Zemora, Georgeta; Waldsich, Christina (November 2010). "RNA folding in living cells". RNA Biology. 7 (6): 634–641. doi:10.4161/rna.7.6.13554. PMC 3073324. PMID 21045541.
- Schreiber, Ulrich; Locker-Grütjen, Oliver; Mayer, Christian (2012). "Hypothesis: Origin of Life in Deep-Reaching Tectonic Faults". Origins of Life and Evolution of Biospheres. 42 (1): 47–54. Bibcode:2012OLEB...42...47S. doi:10.1007/s11084-012-9267-4. ISSN 0169-6149. PMID 22373604.
- Schreiber, Ulrich; Mayer, Christian; Schmitz, Oliver J.; Rosendahl, Pia; Bronja, Amela; Greule, Markus; Keppler, Frank; Mulder, Ines; Sattler, Tobias; Schöler, Heinz F. (14 June 2017). Stüeken, Eva Elisabeth (ed.). "Organic compounds in fluid inclusions of Archean quartz—Analogues of prebiotic chemistry on early Earth". PLOS ONE. 12 (6): e0177570. Bibcode:2017PLoSO..1277570S. doi:10.1371/journal.pone.0177570. ISSN 1932-6203. PMC 5470662. PMID 28614348.
- Großmann, Yildiz; Schreiber, Ulrich; Mayer, Christian; Schmitz, Oliver J. (21 June 2022). "Aliphatic Aldehydes in the Earth's Crust—Remains of Prebiotic Chemistry?". Life. 12 (7): 925. Bibcode:2022Life...12..925G. doi:10.3390/life12070925. ISSN 2075-1729. PMC 9319801. PMID 35888015.
- Mayer, Christian; Schreiber, Ulrich; Dávila, María (7 January 2017). "Selection of Prebiotic Molecules in Amphiphilic Environments". Life. 7 (1): 3. Bibcode:2017Life....7....3M. doi:10.3390/life7010003. ISSN 2075-1729. PMC 5370403. PMID 28067845.
- Mayer, Christian; Schreiber, Ulrich; Dávila, María J. (2015). "Periodic Vesicle Formation in Tectonic Fault Zones—an Ideal Scenario for Molecular Evolution". Origins of Life and Evolution of Biospheres. 45 (1–2): 139–148. Bibcode:2015OLEB...45..139M. doi:10.1007/s11084-015-9411-z. ISSN 0169-6149. PMC 4457167. PMID 25716918.
- Mayer, Christian; Schreiber, Ulrich; Dávila, María; Schmitz, Oliver; Bronja, Amela; Meyer, Martin; Klein, Julia; Meckelmann, Sven (24 May 2018). "Molecular Evolution in a Peptide-Vesicle System". Life. 8 (2): 16. Bibcode:2018Life....8...16M. doi:10.3390/life8020016. ISSN 2075-1729. PMC 6027363. PMID 29795023.
- ^ Plasson, Raphaël; Kondepudi, Dilip K.; Bersini, Hugues; et al. (August 2007). "Emergence of homochirality in far-from-equilibrium systems: Mechanisms and role in prebiotic chemistry". Chirality. 19 (8): 589–600. doi:10.1002/chir.20440. PMID 17559107. "Special Issue: Proceedings from the Eighteenth International Symposium on Chirality (ISCD-18), Busan, Korea, 2006"
- Chaichian, Rojas & Tureanu 2014, pp. 353–364
- Jafarpour, Farshid; Biancalani, Tommaso; Goldenfeld, Nigel (2017). "Noise-induced symmetry breaking far from equilibrium and the emergence of biological homochirality" (PDF). Physical Review E. 95 (3): 032407. Bibcode:2017PhRvE..95c2407J. doi:10.1103/PhysRevE.95.032407. PMID 28415353. Archived from the original on 2 April 2023. Retrieved 29 August 2019.
- Jafarpour, Farshid; Biancalani, Tommaso; Goldenfeld, Nigel (2015). "Noise-induced mechanism for biological homochirality of early life self-replicators". Physical Review Letters. 115 (15): 158101. arXiv:1507.00044. Bibcode:2015PhRvL.115o8101J. doi:10.1103/PhysRevLett.115.158101. PMID 26550754. S2CID 9775791.
- Frank, F. C. (1953). "On spontaneous asymmetric synthesis". Biochimica et Biophysica Acta. 11 (4): 459–463. doi:10.1016/0006-3002(53)90082-1. PMID 13105666.
- Clark, Stuart (July–August 1999). "Polarized Starlight and the Handedness of Life". American Scientist. 87 (4): 336. Bibcode:1999AmSci..87..336C. doi:10.1511/1999.30.336. S2CID 221585816.
- Shibata, Takanori; Morioka, Hiroshi; Hayase, Tadakatsu; et al. (17 January 1996). "Highly Enantioselective Catalytic Asymmetric Automultiplication of Chiral Pyrimidyl Alcohol". Journal of the American Chemical Society. 118 (2): 471–472. Bibcode:1996JAChS.118..471S. doi:10.1021/ja953066g.
- Soai, Kenso; Sato, Itaru; Shibata, Takanori (2001). "Asymmetric autocatalysis and the origin of chiral homogeneity in organic compounds". The Chemical Record. 1 (4): 321–332. doi:10.1002/tcr.1017. PMID 11893072.
- Hazen 2005, p. 184
- Meierhenrich, Uwe (2008). Amino acids and the asymmetry of life caught in the act of formation. Berlin: Springer. pp. 76–79. ISBN 978-3-540-76886-9.
- Mullen, Leslie (5 September 2005). "Building Life from Star-Stuff". Astrobiology Magazine. Archived from the original on 14 July 2015.
- Root-Bernstein, Robert (23 June 2010). "Experimental Test of L- and D-Amino Acid Binding to L- and D-Codons Suggests that Homochirality and Codon Directionality Emerged with the Genetic Code". Symmetry. 2 (2): 1180–1200. Bibcode:2010Symm....2.1180R. doi:10.3390/sym2021180.
Sources
- Altermann, Wladyslaw (2009). "Introduction: A Roadmap to Fata Morgana?". In Seckbach, Joseph; Walsh, Maud (eds.). From Fossils to Astrobiology: Records of Life on Earth and the Search for Extraterrestrial Biosignatures. Cellular Origin, Life in Extreme Habitats and Astrobiology. Vol. 12. Dordrecht, the Netherlands; London: Springer. ISBN 978-1-4020-8836-0.
- Bada, Jeffrey L.; Lazcano, Antonio (2009). "The Origin of Life". In Ruse, Michael; Travis, Joseph (eds.). Evolution: The First Four Billion Years. Foreword by Edward O. Wilson. Cambridge: Belknap Press of Harvard University Press. ISBN 978-0-674-03175-3. OCLC 225874308.
- Barton, Nicholas H.; Briggs, Derek E.G.; Eisen, Jonathan A.; et al. (2007). Evolution. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press. ISBN 978-0-87969-684-9. OCLC 86090399.
- Bastian, H. Charlton (1871). The Modes of Origin of Lowest Organisms. London; New York: Macmillan and Company. OCLC 42959303. Retrieved 6 June 2015.
- Bernal, J. D. (1951). The Physical Basis of Life. London: Routledge & Kegan Paul.
- Bernal, J. D. (1960). "The Problem of Stages in Biopoesis". In Florkin, M. (ed.). Aspects of the Origin of Life. International Series of Monographs on Pure and Applied Biology. Oxford, UK; New York: Pergamon Press. ISBN 978-1-4831-3587-8.
- Bernal, J. D. (1967) . The Origin of Life. The Weidenfeld and Nicolson Natural History. Translation of Oparin by Ann Synge. London: Weidenfeld & Nicolson.
- Bock, Gregory R.; Goode, Jamie A., eds. (1996). Evolution of Hydrothermal Ecosystems on Earth (and Mars?). Ciba Foundation Symposium. Vol. 202. Chichester, UK; New York: John Wiley & Sons. ISBN 978-0-471-96509-1.
- Bondeson, Jan (1999). The Feejee Mermaid and Other Essays in Natural and Unnatural History. Ithaca, NY: Cornell University Press. ISBN 978-0-8014-3609-3.
- Bryson, Bill (2004). A Short History of Nearly Everything. London: Black Swan. ISBN 978-0-552-99704-1. OCLC 55589795.
- Calvin, Melvin (1969). Chemical Evolution: Molecular Evolution Towards the Origin of Living Systems on the Earth and Elsewhere. Oxford, UK: Clarendon Press. ISBN 978-0-19-855342-7. OCLC 25220.
- Chaichian, Masud; Rojas, Hugo Perez; Tureanu, Anca (2014). "Physics and Life". Basic Concepts in Physics. Undergraduate Lecture Notes in Physics. Berlin; Heidelberg: Springer Berlin Heidelberg. pp. 353–364. doi:10.1007/978-3-642-19598-3_12. ISBN 978-3-642-19597-6. OCLC 900189038. S2CID 115247432.
- Chang, Thomas Ming Swi (2007). Artificial Cells: Biotechnology, Nanomedicine, Regenerative Medicine, Blood Substitutes, Bioencapsulation, and Cell/Stem Cell Therapy. Regenerative Medicine, Artificial Cells and Nanomedicine. Vol. 1. Hackensack, New Jersey: World Scientific. ISBN 978-981-270-576-1. OCLC 173522612.
- Dalrymple, G. Brent (2001). "The age of the Earth in the twentieth century: a problem (mostly) solved". In Lewis, C.L.E.; Knell, S.J. (eds.). The Age of the Earth: from 4004 BC to AD 2002. Geological Society Special Publication. Vol. 190. London: Geological Society of London. pp. 205–221. Bibcode:2001GSLSP.190..205D. doi:10.1144/gsl.sp.2001.190.01.14. ISBN 978-1-86239-093-5. OCLC 48570033. S2CID 130092094.
- Darwin, Charles (1887). Darwin, Francis (ed.). The Life and Letters of Charles Darwin, Including an Autobiographical Chapter. Vol. 3 (3rd ed.). London: John Murray. OCLC 834491774.
- Davies, Paul (1999). The Fifth Miracle: The Search for the Origin of Life. London: Penguin Books. ISBN 978-0-14-028226-9.
- Dobell, Clifford (1960) . Antony van Leeuwenhoek and His 'Little Animals'. New York: Dover Publications.
- Dyson, Freeman (1999). Origins of Life (Revised ed.). Cambridge, UK; New York: Cambridge University Press. ISBN 978-0-521-62668-2.
- Fesenkov, V. G. (1959). "Some Considerations about the Primaeval State of the Earth". In Oparin, A. I.; et al. (eds.). The Origin of Life on the Earth. I.U.B. Symposium Series. Vol. 1. Edited for the International Union of Biochemistry by Frank Clark and R.L.M. Synge (English-French-German ed.). London; New York: Pergamon Press. ISBN 978-1-4832-2240-0. International Symposium on the Origin of Life on the Earth (held at Moscow, 19–24 August 1957)
- Hazen, Robert M. (2005). Genesis: The Scientific Quest for Life's Origin. Washington, DC: Joseph Henry Press. ISBN 978-0-309-09432-0. OCLC 60321860.
- Huxley, Thomas Henry (1968) . "VIII Biogenesis and Abiogenesis [1870]". Discourses, Biological and Geological. Collected Essays. Vol. VIII (Reprint ed.). New York: Greenwood Press. OCLC 476737627. Archived from the original on 7 May 2015. Retrieved 19 May 2014.
- Klyce, Brig (22 January 2001). Kingsley, Stuart A.; Bhathal, Ragbir (eds.). Panspermia Asks New Questions. The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum III. Vol. 4273. Bellingham, WA: SPIE. doi:10.1117/12.435366. ISBN 0-8194-3951-7. Archived from the original on 3 September 2013. Retrieved 9 June 2015. Proceedings of the SPIE held at San Jose, California, 22–24 January 2001
- Lane, Nick (2009). Life Ascending: The 10 Great Inventions of Evolution (1st American ed.). New York: W.W. Norton & Company. ISBN 978-0-393-06596-1. OCLC 286488326.
- Lennox, James G. (2001). Aristotle's Philosophy of Biology: Studies in the Origins of Life Science. Cambridge Studies in Philosophy and Biology. Cambridge, UK; New York: Cambridge University Press. ISBN 978-0-521-65976-5.
- Michod, Richard E. (1999). Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality. Princeton, New Jersey: Princeton University Press. ISBN 978-0-691-02699-2. OCLC 38948118.
- Oparin, A.I. (1953) . The Origin of Life. Translation and new introduction by Sergius Morgulis (2nd ed.). Mineola, NY: Dover Publications. ISBN 978-0-486-49522-4.
- Ross, Alexander (1652). Arcana Microcosmi. Vol. II. London. OCLC 614453394. Archived from the original on 24 February 2024. Retrieved 14 July 2015.
- Sheldon, Robert B. (22 September 2005). "Historical Development of the Distinction between Bio- and Abiogenesis" (PDF). In Hoover, Richard B.; Levin, Gilbert V.; Rozanov, Alexei Y.; Gladstone, G. Randall (eds.). Astrobiology and Planetary Missions. Astrobiology and Planetary Missions. Vol. 5906. Bellingham, WA: SPIE. pp. 59061I. doi:10.1117/12.663480. ISBN 978-0-8194-5911-4. Archived (PDF) from the original on 13 April 2015. Retrieved 13 April 2015. Proceedings of the SPIE held at San Diego, California, 31 July–2 August 2005
- Tyndall, John (1905) . Fragments of Science. Vol. 2 (6th ed.). New York: P.F. Collier & Sons. OCLC 726998155.
- Voet, Donald; Voet, Judith G. (2004). Biochemistry. Vol. 1 (3rd ed.). New York: John Wiley & Sons. ISBN 978-0-471-19350-0.
- Yarus, Michael (2010). Life from an RNA World: The Ancestor Within. Cambridge, Massachusetts: Harvard University Press. p. 287. ISBN 978-0-674-05075-4.
External links
Library resources aboutAbiogenesis
- Making headway with the mysteries of life's origins – Adam Mann (PNAS; 14 April 2021)
- Exploring Life's Origins Archived 8 April 2023 at the Wayback Machine a virtual exhibit at the Museum of Science (Boston)
- How life began on Earth – Marcia Malory (Earth Facts; 2015)
- The Origins of Life – Richard Dawkins et al. (BBC Radio; 2004)
- Life in the Universe – Essay by Stephen Hawking (1996)
Origin of life | |
---|---|
History of research |
|
Prebiotic synthesis | |
Protocells | |
Earliest organisms | |
Research |
Elements of nature | |||||
---|---|---|---|---|---|
Universe | |||||
Earth | |||||
Weather | |||||
Natural environment | |||||
Life | |||||
See also | |||||