Misplaced Pages

Sodium cyanide

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Toxic chemical compound (NaCN)
Sodium cyanide
Sodium cyanide bonding
Identifiers
CAS Number
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.005.091 Edit this at Wikidata
EC Number
  • 205-599-4
PubChem CID
RTECS number
  • VZ7525000
UNII
UN number 1689
CompTox Dashboard (EPA)
InChI
  • InChI=1S/CN.Na/c1-2;/q-1;+1Key: MNWBNISUBARLIT-UHFFFAOYSA-N
  • InChI=1S/CN.Na/c1-2;/q-1;+1Key: MNWBNISUBARLIT-UHFFFAOYAG
SMILES
  • #N.
Properties
Chemical formula NaCN
Molar mass 49.0072 g/mol
Appearance white solid
Odor faint bitter almond-like
Density 1.5955 g/cm
Melting point 563.7 °C (1,046.7 °F; 836.9 K)
Boiling point 1,496 °C (2,725 °F; 1,769 K)
Solubility in water 48.15 g/100 mL (10 °C)
63.7 g/100 mL (25 °C)
Solubility soluble in ammonia, methanol, ethanol
very slightly soluble in dimethylformamide, SO2
insoluble in dimethyl sulfoxide
Refractive index (nD) 1.452
Thermochemistry
Heat capacity (C) 70.4 J·mol·K
Std molar
entropy
(S298)
115.6 J·mol·K
Std enthalpy of
formation
fH298)
−87.5 kJ·mol
Gibbs free energyfG) −76.4 kJ·mol
Enthalpy of fusionfHfus) 8.79 kJ·mol
Hazards
GHS labelling:
Pictograms GHS06: Toxic GHS09: Environmental hazard
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
4 0 0
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
LD50 (median dose) 6.44 mg/kg (rat, oral)
4 mg/kg (sheep, oral)
15 mg/kg (mammal, oral)
8 mg/kg (rat, oral)
NIOSH (US health exposure limits):
PEL (Permissible) TWA 5 mg/m
REL (Recommended) C 5 mg/m (4.7 ppm)
IDLH (Immediate danger) 25 mg/m (as CN)
Safety data sheet (SDS) ICSC 1118
Related compounds
Other cations Potassium cyanide
Related compounds Hydrogen cyanide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Sodium cyanide is a compound with the formula NaCN and the structure Na C≡N. It is a white, water-soluble solid. Cyanide has a high affinity for metals, which leads to the high toxicity of this salt. Its main application, in gold mining, also exploits its high reactivity toward metals. It is a moderately strong base.

Production and chemical properties

Sodium cyanide is produced by treating hydrogen cyanide with sodium hydroxide:

HCN + NaOH → NaCN + H2O

Worldwide production was estimated at 500,000 tons in the year 2006. Formerly it was prepared by the Castner process involving the reaction of sodium amide with carbon at elevated temperatures.

NaNH2 + C → NaCN + H2

The structure of solid NaCN is related to that of sodium chloride. The anions and cations are each six-coordinate. Potassium cyanide (KCN) adopts a similar structure.

When treated with acid, it forms the toxic gas hydrogen cyanide:

NaCN + H → HCN + Na

Because the salt is derived from a weak acid, sodium cyanide readily reverts to HCN by hydrolysis; the moist solid emits small amounts of hydrogen cyanide, which is thought to smell like bitter almonds (not everyone can smell it—the ability thereof is due to a genetic trait). Sodium cyanide reacts rapidly with strong acids to release hydrogen cyanide. This dangerous process represents a significant risk associated with cyanide salts. It is detoxified most efficiently with hydrogen peroxide (H2O2) to produce sodium cyanate (NaOCN) and water:

NaCN + H2O2 → NaOCN + H2O

Applications

Cyanide mining

Gold cyanidation (also known as the cyanide process) is the dominant technique for extracting gold, much of which is obtained from low-grade ore. More than 70% of cyanide consumption globally is used for this purpose. The application exploits the high affinity of gold(I) for cyanide, which induces gold metal to oxidize and dissolve in the presence of air (oxygen) and water, producing the salt sodium dicyanoaurate (or sodium gold cyanide) (NaAu(CN)2):

4 Au + 8 NaCN + O2 + 2 H2O → 4 Na[Au(CN)2] + 4 NaOH

A similar process uses potassium cyanide (KCN, a close relative of sodium cyanide) to produce potassium dicyanoaurate (KAu(CN)2).

Chemical feedstock

Several commercially significant chemical compounds are derived from cyanide, including cyanuric chloride, cyanogen chloride, and many nitriles. In organic synthesis, cyanide, which is classified as a strong nucleophile, is used to prepare nitriles, which occur widely in many chemicals, including pharmaceuticals. Illustrative is the synthesis of benzyl cyanide by the reaction of benzyl chloride and sodium cyanide.

Niche uses

Being highly toxic, sodium cyanide is used to kill or stun rapidly such as in collecting jars used by entomologists and in widely illegal cyanide fishing.

It was used as an insecticide, rodenticide and antibacterial, but these uses were cancelled by the EPA in 1987.

Toxicity

Main article: Cyanide poisoning

Sodium cyanide, like other soluble cyanide salts, is among the most rapidly acting of all known poisons. NaCN is a potent inhibitor of respiration, acting on mitochondrial cytochrome oxidase and hence blocking electron transport. This results in decreased oxidative metabolism and oxygen utilization. Lactic acidosis then occurs as a consequence of anaerobic metabolism. An oral dosage as small as 200–300 mg can be fatal.

References

  1. CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data. William M. Haynes, David R. Lide, Thomas J. Bruno (2016-2017, 97th ed.). Boca Raton, Florida. 2016. ISBN 978-1-4987-5428-6. OCLC 930681942.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  2. ^ NIOSH Pocket Guide to Chemical Hazards. "#0562". National Institute for Occupational Safety and Health (NIOSH).
  3. "Cyanides (as CN)". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. ^ Rubo, Andreas; Kellens, Raf; Reddy, Jay; Steier, Norbert; Hasenpusch, Wolfgang (2006). "Alkali Metal Cyanides". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.i01_i01. ISBN 978-3527306732.
  5. Wells, A.F. (1984) Structural Inorganic Chemistry, Oxford: Clarendon Press. ISBN 0-19-855370-6.
  6. H. T. Stokes; D. L. Decker; H. M. Nelson; J. D. Jorgensen (1993). "Structure of potassium cyanide at low temperature and high pressure determined by neutron diffraction". Phys. Rev. B (Submitted manuscript). 47 (17): 11082–11092. Bibcode:1993PhRvB..4711082S. doi:10.1103/PhysRevB.47.11082. PMID 10005242.
  7. Online Mendelian Inheritance in Man (OMIM): 304300
  8. Adams, Roger; Thal, A. F. (1922). "Benzyl cyanide". Organic Syntheses. 2: 9. doi:10.15227/orgsyn.002.0009.
  9. "Reregistration Eligibility Decision (R.E.D. Facts) Sodium cyanide" (PDF). United States Environmental Protection Agency. September 1994.

External links

Sodium compounds
Inorganic
Halides
Chalcogenides
Pnictogenides
Oxyhalides
Oxychalcogenides
Oxypnictogenides
Others
Organic
Salts and covalent derivatives of the cyanide ion
HCN He
LiCN Be(CN)2 B(CN)3 C(CN)4
C2(CN)2
NH4CN
ONCN
O2NCN
N3CN
OCN
-NCO
O(CN)2
FCN Ne
NaCN Mg(CN)2 Al(CN)3 Si(CN)4
(CH3)3SiCN
P(CN)3 SCN
-NCS
(SCN)2
S(CN)2
ClCN Ar
KCN Ca(CN)2 Sc(CN)3 Ti V Cr(CN)6 Mn Fe(CN)2
Fe(CN)6
Fe(CN)6
Co(CN)2
Co(CN)
5
Ni(CN)2
Ni(CN)4
Ni(CN)4
CuCN Zn(CN)2 Ga(CN)3 Ge(CN)2
Ge(CN)4
As(CN)3
(CH3)2AsCN
(C6H5)2AsCN
SeCN
(SeCN)2
Se(CN)2
BrCN Kr
RbCN Sr(CN)2 Y(CN)3 Zr Nb Mo(CN)8 Tc Ru Rh Pd(CN)2 AgCN Cd(CN)2 In(CN)3 Sn(CN)2 Sb(CN)3 Te(CN)2
Te(CN)4
ICN Xe
CsCN Ba(CN)2 * Lu(CN)3 Hf Ta W(CN)8 Re Os Ir Pt(CN)4
Pt(CN)6
AuCN
Au(CN)2
Hg2(CN)2
Hg(CN)2
TlCN Pb(CN)2 Bi(CN)3 Po At Rn
Fr Ra ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* La(CN)3 Ce(CN)3
Ce(CN)4
Pr(CN)3 Nd Pm Sm(CN)3 Eu(CN)3 Gd(CN)3 Tb Dy(CN)3 Ho(CN)3 Er Tm Yb(CN)3
** Ac(CN)3 Th(CN)4 Pa UO2(CN)2 Np Pu Am Cm Bk Cf Es Fm Md No
Molecules detected in outer space
Molecules
Diatomic







Triatomic
Four
atoms
Five
atoms
Six
atoms
Seven
atoms
Eight
atoms
Nine
atoms
Ten
atoms
or more
Deuterated
molecules
Unconfirmed
Related
Categories: