Misplaced Pages

Isotopes of iron

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Isotopes of iron (26Fe)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Fe 5.85% stable
Fe synth 2.73 y ε Mn
Fe 91.8% stable
Fe 2.12% stable
Fe 0.28% stable
Fe synth 44.6 d β Co
Fe trace 2.6×10 y β Co
Standard atomic weight Ar°(Fe)

Natural iron (26Fe) consists of four stable isotopes: 5.845% Fe (possibly radioactive with half-life >4.4×10 years), 91.754% Fe, 2.119% Fe and 0.286% Fe. There are 28 known radioisotopes and 8 nuclear isomers, the most stable of which are Fe (half-life 2.6 million years) and Fe (half-life 2.7 years).

Much of the past work on measuring the isotopic composition of iron has centered on determining Fe variations due to processes accompanying nucleosynthesis (i.e., meteorite studies) and ore formation. In the last decade however, advances in mass spectrometry technology have allowed the detection and quantification of minute, naturally occurring variations in the ratios of the stable isotopes of iron. Much of this work has been driven by the Earth and planetary science communities, though applications to biological and industrial systems are beginning to emerge.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Fe 26 19 45.01547(30)# 2.5(2) ms 2p (70%) Cr 3/2+#
β, p (18.9%) Cr
β, 2p (7.8%) V
β (3.3%) Mn
Fe 26 20 46.00130(32)# 13.0(20) ms β, p (78.7%) Cr 0+
β (21.3%) Mn
β, 2p? V
Fe 26 21 46.99235(54)# 21.9(2) ms β, p (88.4%) Cr 7/2−#
β (11.6%) Mn
Fe 26 22 47.980667(99) 45.3(6) ms β (84.7%) Mn 0+
β, p (15.3%) Cr
Fe 26 23 48.973429(26) 64.7(3) ms β, p (56.7%) Cr (7/2−)
β (43.3%) Mn
Fe 26 24 49.9629880(90) 152.0(6) ms β Mn 0+
β, p? Cr
Fe 26 25 50.9568551(15) 305.4(23) ms β Mn 5/2−
Fe 26 26 51.94811336(19) 8.275(8) h β Mn 0+
Fe 6960.7(3) keV 45.9(6) s β (99.98%) Mn 12+
IT (0.021%) Fe
Fe 26 27 52.9453056(18) 8.51(2) min β Mn 7/2−
Fe 3040.4(3) keV 2.54(2) min IT Fe 19/2−
Fe 26 28 53.93960819(37) Observationally Stable 0+ 0.05845(105)
Fe 6527.1(11) keV 364(7) ns IT Fe 10+
Fe 26 29 54.93829116(33) 2.7562(4) y EC Mn 3/2−
Fe 26 30 55.93493554(29) Stable 0+ 0.91754(106)
Fe 26 31 56.93539195(29) Stable 1/2− 0.02119(29)
Fe 26 32 57.93327358(34) Stable 0+ 0.00282(12)
Fe 26 33 58.93487349(35) 44.500(12) d β Co 3/2−
Fe 26 34 59.9340702(37) 2.62(4)×10 y β Co 0+ trace
Fe 26 35 60.9367462(28) 5.98(6) min β Co (3/2−)
Fe 861.67(11) keV 238(5) ns IT Fe 9/2+
Fe 26 36 61.9367918(30) 68(2) s β Co 0+
Fe 26 37 62.9402727(46) 6.1(6) s β Co (5/2−)
Fe 26 38 63.9409878(54) 2.0(2) s β Co 0+
Fe 26 39 64.9450153(55) 805(10) ms β Co (1/2−)
β, n? Co
Fe 393.7(2) keV 1.12(15) s β? Co (9/2+)
Fe 397.6(2) keV 418(12) ns IT Fe (5/2+)
Fe 26 40 65.9462500(44) 467(29) ms β Co 0+
β, n? Co
Fe 26 41 66.9509300(41) 394(9) ms β Co (1/2-)
β, n? Co
Fe 403(9) keV 64(17) μs IT Fe (5/2+,7/2+)
Fe 450(100)# keV 75(21) μs IT Fe (9/2+)
Fe 26 42 67.95288(21)# 188(4) ms β Co 0+
β, n? Co
Fe 26 43 68.95792(22)# 162(7) ms β Co 1/2−#
β, n? Co
β, 2n? Co
Fe 26 44 69.96040(32)# 61.4(7) ms β Co 0+
β, n? Co
Fe 26 45 70.96572(43)# 34.3(26) ms β Co 7/2+#
β, n? Co
β, 2n? Co
Fe 26 46 71.96860(54)# 17.0(10) ms β Co 0+
β, n? Co
β, 2n? Co
Fe 26 47 72.97425(54)# 12.9(16) ms β Co 7/2+#
β, n? Co
β, 2n? Co
Fe 26 48 73.97782(54)# 5(5) ms β Co 0+
β, n? Co
β, 2n? Co
Fe 26 49 74.98422(64)# 9# ms
β? Co 9/2+#
β, n? Co
β, 2n? Co
Fe 26 50 75.98863(64)# 3# ms
β? Co 0+
This table header & footer:
  1. Fe – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold symbol as daughter – Daughter product is stable.
  7. ( ) spin value – Indicates spin with weak assignment arguments.
  8. Believed to decay by ββ to Cr with a half-life of over 4.4×10 a
  9. Lowest mass per nucleon of all nuclides; End product of stellar nucleosynthesis

Iron-54

Fe is observationally stable, but theoretically can decay to Cr, with a half-life of more than 4.4×10 years via double electron capture (εε).

Iron-56

Main article: Iron-56

Fe is the most abundant isotope of iron. It is also the isotope with the lowest mass per nucleon, 930.412 MeV/c, though not the isotope with the highest nuclear binding energy per nucleon, which is nickel-62. However, because of the details of how nucleosynthesis works, Fe is a more common endpoint of fusion chains inside supernovae, where it is mostly produced as Ni. Thus, Ni is more common in the universe, relative to other metals, including Ni, Fe and Ni, all of which have a very high binding energy.

The high nuclear binding energy of Fe represents the point where further nuclear reactions become energetically unfavorable. Therefore it is among the heaviest elements formed in stellar nucleosynthesis reactions in massive stars. These reactions fuse lighter elements like magnesium, silicon, and sulfur to form heavier elements. Among the heavier elements formed is Ni, which subsequently decays to Co and then Fe.

Iron-57

Fe is widely used in Mössbauer spectroscopy and the related nuclear resonance vibrational spectroscopy due to the low natural variation in energy of the 14.4 keV nuclear transition. The transition was famously used to make the first definitive measurement of gravitational redshift, in the 1960 Pound–Rebka experiment.

Iron-58

Iron-58 can be used to combat anemia and low iron absorption, to metabolically track iron-controlling human genes, and for tracing elements in nature. Iron-58 is also an assisting reagent in the synthesis of superheavy elements.

Iron-60

Iron-60 has a half-life of 2.6 million years, but was thought until 2009 to have a half-life of 1.5 million years. It undergoes beta decay to cobalt-60, which then decays with a half-life of about 5 years to stable nickel-60. Traces of iron-60 have been found in lunar samples.

In phases of the meteorites Semarkona and Chervony Kut, a correlation between the concentration of Ni, the granddaughter isotope of Fe, and the abundance of the stable iron isotopes could be found, which is evidence for the existence of Fe at the time of formation of the Solar System. Possibly the energy from the decay of Fe contributed, together with the energy from the decay of the radionuclide Al, to the remelting and differentiation of asteroids after their formation 4.6 billion years ago. The abundance of Ni in extraterrestrial material may also provide further insight into the origin of the Solar System and its early history.

Iron-60 found in fossilized bacteria in sea floor sediments suggest there was a supernova near the Solar System about 2 million years ago. Iron-60 is also found in sediments from 8 million years ago. In 2019, researchers found interstellar Fe in Antarctica, which they relate to the Local Interstellar Cloud.

The distance to the supernova of origin can be estimated by relating the amount of iron-60 intercepted as Earth passes through the expanding supernova ejecta. Assuming that the material ejected in a supernova expands uniformly out from its origin as a sphere with surface area 4πr. The fraction of the material intercepted by the Earth is dependent on its cross-sectional area (πREarth) as it passes through the expanding debris. Where Mej is the mass of ejected material. M Fraction intercepted  = π R Earth  2 4 π r 2 M e j {\displaystyle M_{\text{Fraction intercepted }}={\frac {\pi R_{\text{Earth }}^{2}}{4\pi r^{2}}}M_{ej}} Assuming the intercepted material is distributed uniformly across the surface of the Earth (4πREarth), the mass surface density (Σej) of the supernova ejecta on Earth is: Σ e j = M Fraction intercepted  A surface,Earth  = M e j 16 π r 2 {\displaystyle \Sigma _{ej}={\frac {M_{\text{Fraction intercepted }}}{A_{\text{surface,Earth }}}}={\frac {M_{ej}}{16\pi r^{2}}}} The number of Fe atoms per unit area found on Earth can be estimated if the typical amount of Fe ejected from a supernova is known. This can be done by dividing the surface mass density (Σej) by the atomic mass of Fe. N 60 = ( M e j , 60 / m 60 16 π r 2 ) {\displaystyle N_{60}=\left({\frac {M_{ej,60}/m_{60}}{16\pi r^{2}}}\right)} The equation for N can be rearranged to find the distance to the supernova. r = M e j , 60 16 π m 60 N 60 {\displaystyle r={\sqrt {\frac {M_{ej,60}}{16\pi m_{60}N_{60}}}}} An example calculation for the distance to the supernova point of origin is given below. This calculation uses speculative values for terrestrial Fe atom surface density (N60 ≈ 4 × 10 atoms/m) and a rough estimate of the mass of Fe ejected by a supernova (10 M). r = 10 5 M 16 π ( 60 m p ) N 60 {\displaystyle r={\sqrt {\frac {10^{-5}M_{\odot }}{16\pi \left(60m_{p}\right)N_{60}}}}} r = 3 × 10 18 m = 100 p c {\displaystyle r=3\times 10^{18}m=100pc} More sophisticated analyses have been reported that take into consideration the flux and deposition of Fe as well as possible interfering background sources.

Cobalt-60, the decay product of iron-60, emits 1.173 MeV and 1.333 MeV as it decays. These gamma-ray lines have long been important targets for gamma-ray astronomy, and have been detected by the gamma-ray observatory INTEGRAL. The signal traces the Galactic plane, showing that Fe synthesis is ongoing in our Galaxy, and probing element production in massive stars.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Iron". CIAAW. 1993.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Bikit, I.; Krmar, M.; Slivka, J.; Vesković, M.; Čonkić, Lj.; Aničin, I. (1998). "New results on the double β decay of iron". Physical Review C. 58 (4): 2566–2567. Bibcode:1998PhRvC..58.2566B. doi:10.1103/PhysRevC.58.2566.
  5. N. Dauphas; O. Rouxel (2006). "Mass spectrometry and natural variations of iron isotopes". Mass Spectrometry Reviews. 25 (4): 515–550. Bibcode:2006MSRv...25..515D. doi:10.1002/mas.20078. PMID 16463281.
  6. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  7. Fewell, M. P. (1995). "The atomic nuclide with the highest mean binding energy". American Journal of Physics. 63 (7): 653. Bibcode:1995AmJPh..63..653F. doi:10.1119/1.17828.
  8. R. Nave. "Mossbauer Effect in Iron-57". HyperPhysics. Georgia State University. Retrieved 2009-10-13.
  9. Pound, R. V.; Rebka Jr. G. A. (April 1, 1960). "Apparent weight of photons". Physical Review Letters. 4 (7): 337–341. Bibcode:1960PhRvL...4..337P. doi:10.1103/PhysRevLett.4.337.
  10. "Iron-58 Metal Isotope". American Elements. Retrieved 2023-06-28.
  11. ^ Vasiliev, Petr. "Iron-58, Iron-58 Isotope, Enriched Iron-58, Iron-58 Metal". www.buyisotope.com. Retrieved 2023-06-28.
  12. Rugel, G.; Faestermann, T.; Knie, K.; Korschinek, G.; Poutivtsev, M.; Schumann, D.; Kivel, N.; Günther-Leopold, I.; Weinreich, R.; Wohlmuther, M. (2009). "New Measurement of the Fe Half-Life". Physical Review Letters. 103 (7): 72502. Bibcode:2009PhRvL.103g2502R. doi:10.1103/PhysRevLett.103.072502. PMID 19792637.
  13. "Eisen mit langem Atem". scienceticker. 27 August 2009. Archived from the original on 3 February 2018. Retrieved 22 May 2010.
  14. Belinda Smith (Aug 9, 2016). "Ancient bacteria store signs of supernova smattering". Cosmos.
  15. Peter Ludwig; et al. (Aug 16, 2016). "Time-resolved 2-million-year-old supernova activity discovered in Earth's microfossil record". PNAS. 113 (33): 9232–9237. arXiv:1710.09573. Bibcode:2016PNAS..113.9232L. doi:10.1073/pnas.1601040113. PMC 4995991. PMID 27503888.
  16. Colin Barras (Oct 14, 2017). "Fires may have given our evolution a kick-start". New Scientist. 236 (3147): 7. Bibcode:2017NewSc.236....7B. doi:10.1016/S0262-4079(17)31997-8.
  17. Koll, Dominik; et., al. (2019). "Interstellar Fe in Antarctica". Physical Review Letters. 123 (7): 072701. Bibcode:2019PhRvL.123g2701K. doi:10.1103/PhysRevLett.123.072701. hdl:1885/298253. PMID 31491090. S2CID 201868513.
  18. Ertel, Adrienne F.; Fry, Brian J.; Fields, Brian D.; Ellis, John (20 April 2023). "Supernova Dust Evolution Probed by Deep-sea 60Fe Time History". The Astrophysical Journal. 947 (2): 58–83 – via The Institute of Physics (IOP).
  19. Harris, M. J.; Knödlseder, J.; Jean, P.; Cisana, E.; Diehl, R.; Lichti, G. G.; Roques, J. -P.; Schanne, S.; Weidenspointner, G. (2005-04-01). "Detection of γ-ray lines from interstellar 60Fe by the high resolution spectrometer SPI". Astronomy and Astrophysics. 433 (3): L49 – L52. arXiv:astro-ph/0502219. Bibcode:2005A&A...433L..49H. doi:10.1051/0004-6361:200500093. ISSN 0004-6361.
  20. Wang, W.; Siegert, T.; Dai, Z. G.; Diehl, R.; Greiner, J.; Heger, A.; Krause, M.; Lang, M.; Pleintinger, M. M. M.; Zhang, X. L. (2020-02-01). "Gamma-Ray Emission of 60Fe and 26Al Radioactivity in Our Galaxy". The Astrophysical Journal. 889 (2): 169. arXiv:1912.07874. Bibcode:2020ApJ...889..169W. doi:10.3847/1538-4357/ab6336. ISSN 0004-637X.

Isotope masses from:

Isotopic compositions and standard atomic masses from:

Half-life, spin, and isomer data selected from:

Further reading

Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: