Misplaced Pages

Isotopes of gadolinium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Isotopes of gadolinium (64Gd)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Gd synth 86.9 y α Sm
Gd synth 1.79×10 y α Sm
Gd synth 123.9 d ε Eu
α Sm
Gd 0.2% 1.08×10 y α Sm
Gd synth 240.6 d ε Eu
Gd 2.18% stable
Gd 14.8% stable
Gd 20.5% stable
Gd 15.7% stable
Gd 24.8% stable
Gd 21.9% stable
Standard atomic weight Ar°(Gd)

Naturally occurring gadolinium (64Gd) is composed of 6 stable isotopes, Gd, Gd, Gd, Gd, Gd and Gd, and 1 radioisotope, Gd, with Gd being the most abundant (24.84% natural abundance). The predicted double beta decay of Gd has never been observed; only a lower limit on its half-life of more than 1.3×10 years has been set experimentally.

Thirty-three radioisotopes have been characterized, with the most stable being alpha-decaying Gd (naturally occurring) with a half-life of 1.08×10 years, and Gd with a half-life of 1.79×10 years. All of the remaining radioactive isotopes have half-lives less than 100 years, the majority of these having half-lives less than 24.6 seconds. Gadolinium isotopes have 10 metastable isomers, with the most stable being Gd (t1/2 = 110 seconds), Gd (t1/2 = 85 seconds) and Gd (t1/2 = 24.5 seconds).

The primary decay mode at atomic weights lower than the most abundant stable isotope, Gd, is electron capture, and the primary mode at higher atomic weights is beta decay. The primary decay products for isotopes lighter than Gd are isotopes of europium and the primary products of heavier isotopes are isotopes of terbium.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Gd 64 71 134.95250(43)# 1.1(2) s β (98%) Eu (5/2+)
β, p (98%) Sm
Gd 64 72 135.94730(32)# 1# s β? Eu 0+
β, p? Sm
Gd 64 73 136.94502(32)# 2.2(2) s β Eu (7/2)+#
β, p? Sm
Gd 64 74 137.94025(22)# 4.7(9) s β Eu 0+
Gd 2232.6(11) keV 6.2(0.2) μs IT Gd (8−)
Gd 64 75 138.93813(21)# 5.7(3) s β Eu 9/2−#
β, p? Sm
Gd 250(150)# keV 4.8(9) s β Eu 1/2+#
β, p? Sm
Gd 64 76 139.933674(30) 15.8(4) s β (67(8)%) Eu 0+
EC (33(8)%)
Gd 64 77 140.932126(21) 14(4) s β (99.97%) Eu (1/2+)
β, p (0.03%) Sm
Gd 377.76(9) keV 24.5(5) s β (89%) Eu (11/2−)
IT (11%) Gd
Gd 64 78 141.928116(30) 70.2(6) s EC (52(5)%) Eu 0+
β (48(5)%)
Gd 64 79 142.92675(22) 39(2) s β Eu 1/2+
β, p? Sm
β, α? Pm
Gd 152.6(5) keV 110.0(14) s β Eu 11/2−
β, p? Sm
β, α? Pm
Gd 64 80 143.922963(30) 4.47(6) min β Eu 0+
Gd 3433.1(5) keV 145(30) ns IT Gd (10+)
Gd 64 81 144.921710(21) 23.0(4) min β Eu 1/2+
Gd 749.1(2) keV 85(3) s IT (94.3%) Gd 11/2−
β (5.7%) Eu
Gd 64 82 145.9183185(44) 48.27(10) d EC Eu 0+
Gd 64 83 146.9191010(20) 38.06(12) h β Eu 7/2−
Gd 8587.8(5) keV 510(20) ns IT Gd 49/2+
Gd 64 84 147.9181214(16) 86.9(39) y α Sm 0+
Gd 64 85 148.9193477(36) 9.28(10) d β Eu 7/2−
α (4.3×10%) Sm
Gd 64 86 149.9186639(65) 1.79(8)×10 y α Sm 0+
Gd 64 87 150.9203549(32) 123.9(10) d EC Eu 7/2−
α (1.1×10%) Sm
Gd 64 88 151.9197984(11) 1.08(8)×10 y α Sm 0+ 0.0020(1)
Gd 64 89 152.9217569(11) 240.6(7) d EC Eu 3/2−
Gd 95.1737(8) keV 3.5(4) μs IT Gd 9/2+
Gd 171.188(4) keV 76.0(14) μs IT Gd (11/2−)
Gd 64 90 153.9208730(11) Observationally Stable 0+ 0.0218(2)
Gd 64 91 154.9226294(11) Observationally Stable 3/2− 0.1480(9)
Gd 121.10(19) keV 31.97(27) ms IT Gd 11/2−
Gd 64 92 155.9221301(11) Stable 0+ 0.2047(3)
Gd 2137.60(5) keV 1.3(1) μs IT Gd 7-
Gd 64 93 156.9239674(10) Stable 3/2− 0.1565(4)
Gd 63.916(5) keV 460(40) ns IT Gd 5/2+
Gd 426.539(23) keV 18.5(23) μs IT Gd 11/2−
Gd 64 94 157.9241112(10) Stable 0+ 0.2484(8)
Gd 64 95 158.9263958(11) 18.479(4) h β Tb 3/2−
Gd 64 96 159.9270612(12) Observationally Stable 0+ 0.2186(3)
Gd 64 97 160.9296763(16) 3.646(3) min β Tb 5/2−
Gd 64 98 161.9309918(43) 8.4(2) min β Tb 0+
Gd 64 99 162.93409664(86) 68(3) s β Tb 7/2+
Gd 138.22(20) keV 23.5(10) s IT? Gd 1/2−
β Tb
Gd 64 100 163.9359162(11) 45(3) s β Tb 0+
Gd 1095.8(4) keV 589(18) ns IT Gd (4−)
Gd 64 101 164.9393171(14) 11.6(10) s β Tb 1/2−#
Gd 64 102 165.9416304(17) 5.1(8) s β Tb 0+
Gd 1601.5(11) keV 950(60) ns IT Gd (6−)
Gd 64 103 166.9454900(56) 4.2(3) s β Tb 5/2−#
Gd 64 104 167.94831(32)# 3.03(16) s β Tb 0+
Gd 64 105 168.95288(43)# 750(210) ms β Tb 7/2−#
β, n? (<0.7%) Tb
Gd 64 106 169.95615(54)# 675+94
−75 ms
β Tb 0+
β, n? (<3%) Tb
Gd 64 107 170.96113(54)# 392+145
−136 ms
β Tb 9/2+#
β, n? (<10%) Tb
Gd 64 108 171.96461(32)# 163+113
−99 ms
β Tb 0+#
β, n? (<50%) Tb
This table header & footer:
  1. Gd – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
  7. Bold italics symbol as daughter – Daughter product is nearly stable.
  8. Bold symbol as daughter – Daughter product is stable.
  9. ( ) spin value – Indicates spin with weak assignment arguments.
  10. Order of ground state and isomer is uncertain.
  11. Theorized to also undergo ββ decay to Sm
  12. Theorized to also undergo ββ decay to Sm
  13. primordial radionuclide
  14. Theorized to also undergo ββ decay to Sm
  15. Believed to undergo α decay to Sm
  16. ^ Fission product
  17. Believed to undergo α decay to Sm
  18. Believed to undergo ββ decay to Dy with a half-life over 3.1×10 years

Gadolinium-148

With a half-life of 86.9±3.9 year via alpha decay alone, gadolinium-148 would be ideal for radioisotope thermoelectric generators. However, gadolinium-148 cannot be economically synthesized in sufficient quantities to power a RTG.

Gadolinium-153

Gadolinium-153 has a half-life of 240.4±10 d and emits gamma radiation with strong peaks at 41 keV and 102 keV. It is used as a gamma ray source for X-ray absorptiometry and fluorescence, for bone density gauges for osteoporosis screening, and for radiometric profiling in the Lixiscope portable x-ray imaging system, also known as the Lixi Profiler. In nuclear medicine, it serves to calibrate the equipment needed like single-photon emission computed tomography systems (SPECT) to make x-rays. It ensures that the machines work correctly to produce images of radioisotope distribution inside the patient. This isotope is produced in a nuclear reactor from europium or enriched gadolinium. It can also detect the loss of calcium in the hip and back bones, allowing the ability to diagnose osteoporosis.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ Chiera, Nadine M.; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2023). "Determination of the half-life of gadolinium-148". Applied Radiation and Isotopes. 194. Elsevier BV: 110708. doi:10.1016/j.apradiso.2023.110708. ISSN 0969-8043.
  3. "Standard Atomic Weights: Gadolinium". CIAAW. 2024.
  4. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  5. F. A. Danevich; et al. (2001). "Quest for double beta decay of Gd and Ce isotopes". Nuclear Physics A. 694 (1–2): 375–391. arXiv:nucl-ex/0011020. Bibcode:2001NuPhA.694..375D. doi:10.1016/S0375-9474(01)00983-6. S2CID 11874988.
  6. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  7. ^ Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107): 107. Bibcode:2022ApJ...936..107K. doi:10.3847/1538-4357/ac80fc. hdl:2117/375253.
  8. Council, National Research; Sciences, Division on Engineering Physical; Board, Aeronautics Space Engineering; Board, Space Studies; Committee, Radioisotope Power Systems (2009). Radioisotope Power Systems: An Imperative for Maintaining U.S. Leadership in Space Exploration. CiteSeerX 10.1.1.367.4042. doi:10.17226/12653. ISBN 978-0-309-13857-4.
  9. "PNNL: Isotope Sciences Program – Gadolinium-153". pnl.gov. Archived from the original on 2009-05-27.
  10. "Gadolinium". BCIT Chemistry Resource Center. British Columbia Institute of Technology. Archived from the original on 23 August 2011. Retrieved 30 March 2011.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: