Misplaced Pages

Isotopes of nickel

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Isotopes of nickel (28Ni)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Ni 68.1% stable
Ni trace 7.6×10 y ε Co
Ni 26.2% stable
Ni 1.14% stable
Ni 3.63% stable
Ni synth 100 y β Cu
Ni 0.926% stable
Standard atomic weight Ar°(Ni)
  • 58.6934±0.0004
  • 58.693±0.001 (abridged)

Naturally occurring nickel (28Ni) is composed of five stable isotopes;
Ni
,
Ni
,
Ni
,
Ni
and
Ni
, with
Ni
being the most abundant (68.077% natural abundance). 26 radioisotopes have been characterised with the most stable being
Ni
with a half-life of 76,000 years,
Ni
with a half-life of 100.1 years, and
Ni
with a half-life of 6.077 days. All of the remaining radioactive isotopes have half-lives that are less than 60 hours and the majority of these have half-lives that are less than 30 seconds. This element also has 8 meta states.

List of isotopes

Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation

Ni
28 20 48.01952(46)# 2.8(8) ms 2p (70%)
Fe
0+
β (30%)
Co
β, p?
Fe

Ni
28 21 49.00916(64)# 7.5(10) ms β, p (83%)
Fe
7/2−#
β (17%)
Co

Ni
28 22 49.99629(54)# 18.5(12) ms β, p (73%)
Fe
0+
β, 2p (14%)
Mn
β (13%)
Co

Ni
28 23 50.98749(54)# 23.8(2) ms β, p (87.2%)
Fe
7/2−#
β (12.3%)
Co
β, 2p (0.5%)
Mn

Ni
28 24 51.975781(89) 41.8(10) ms β (68.9%)
Co
0+
β, p (31.1%)
Fe

Ni
28 25 52.968190(27) 55.2(7) ms β (77.3%)
Co
(7/2−)
β, p (22.7%)
Fe

Ni
28 26 53.9578330(50) 114.1(3) ms β
Co
0+
β, p?
Fe

Ni
6457.4(9) keV 152(4) ns IT (64%)
Ni
10+
p (36%)
Co

Ni
28 27 54.95132985(76) 203.9(13) ms β
Co
7/2−

Ni
28 28 55.94212776(43) 6.075(10) d EC
Co
0+
β (<5.8×10%)
Co

Ni
28 29 56.93979139(61) 35.60(6) h β
Co
3/2−

Ni
28 30 57.93534165(37) Observationally stable 0+ 0.680769(190)

Ni
28 31 58.93434544(38) 8.1(5)×10 y EC (99%)
Co
3/2−
β (1.5×10%)

Ni
28 32 59.93078513(38) Stable 0+ 0.262231(150)

Ni
28 33 60.93105482(38) Stable 3/2− 0.011399(13)

Ni
28 34 61.92834475(46) Stable 0+ 0.036345(40)

Ni
28 35 62.92966902(46) 101.2(15) y β
Cu
1/2−

Ni
87.15(11) keV 1.67(3) μs IT Ni 5/2−

Ni
28 36 63.92796623(50) Stable 0+ 0.009256(19)

Ni
28 37 64.93008459(52) 2.5175(5) h β
Cu
5/2−

Ni
63.37(5) keV 69(3) μs IT Ni 1/2−

Ni
28 38 65.9291393(15) 54.6(3) h β
Cu
0+

Ni
28 39 66.9315694(31) 21(1) s β
Cu
1/2−

Ni
1006.6(2) keV 13.34(19) μs IT
Ni
9/2+
IT
Ni

Ni
28 40 67.9318688(32) 29(2) s β
Cu
0+

Ni
1603.51(28) keV 270(5) ns IT Ni 0+

Ni
2849.1(3) keV 850(30) μs IT Ni 5−

Ni
28 41 68.9356103(40) 11.4(3) s β
Cu
(9/2+)

Ni
321(2) keV 3.5(4) s β
Cu
(1/2−)
IT (<0.01%)
Ni

Ni
2700.0(10) keV 439(3) ns IT Ni (17/2−)

Ni
28 42 69.9364313(23) 6.0(3) s β
Cu
0+

Ni
2860.91(8) keV 232(1) ns IT Ni 8+

Ni
28 43 70.9405190(24) 2.56(3) s β
Cu
(9/2+)

Ni
499(5) keV 2.3(3) s β Cu (1/2−)

Ni
28 44 71.9417859(24) 1.57(5) s β
Cu
0+
β, n?
Cu

Ni
28 45 72.9462067(26) 840(30) ms β
Cu
(9/2+)
β, n?
Cu

Ni
28 46 73.9479853(38) 507.7(46) ms β
Cu
0+
β, n?
Cu

Ni
28 47 74.952704(16) 331.6(32) ms β (90.0%)
Cu
9/2+#
β, n (10.0%)
Cu

Ni
28 48 75.95471(32)# 234.6(27) ms β (86.0%)
Cu
0+
β, n (14.0%)
Cu

Ni
2418.0(5) keV 547.8(33) ns IT Ni (8+)

Ni
28 49 76.95990(43)# 158.9(42) ms β (74%)
Cu
9/2+#
β, n (26%)
Cu
β, 2n?
Cu

Ni
28 50 77.96256(43)# 122.2(51) ms β
Cu
0+
β, n?
Cu
β, 2n?
Cu

Ni
28 51 78.96977(54)# 44(8) ms β
Cu
5/2+#
β, n?
Cu
β, 2n?
Cu

Ni
28 52 79.97505(64)# 30(22) ms β
Cu
0+
β, n?
Cu
β, 2n?
Cu

Ni
28 53 80.98273(75)# 30# ms
β?
Cu
3/2+#

Ni
28 54 81.98849(86)# 16# ms
β?
Cu
0+
This table header & footer:
  1. Ni – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
  6. Bold symbol as daughter – Daughter product is stable.
  7. ( ) spin value – Indicates spin with weak assignment arguments.
  8. Believed to decay by ββ to
    Fe
    with a half-life over 7×10 years
  9. Highest binding energy per nucleon of all nuclides

Notable isotopes

This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (May 2018) (Learn how and when to remove this message)
This section possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (May 2018) (Learn how and when to remove this message)

The known isotopes of nickel range in mass number from
Ni
to
Ni
, and include:

Nickel-48, discovered in 1999, is the most neutron-poor nickel isotope known. With 28 protons and 20 neutrons
Ni
is "doubly magic" (like
Pb
) and therefore much more stable (with a lower limit of its half-life-time of .5 μs) than would be expected from its position in the chart of nuclides. It has the highest ratio of protons to neutrons (proton excess) of any known doubly magic nuclide.

Nickel-56 is produced in large quantities in supernovae. In the last phases of stellar evolution of very large stars, nuclear fusion of lighter elements like hydrogen and helium comes to an end. Later in the star's life cycle, elements including magnesium, silicon, and sulfur are fused to form heavier elements. Once the last nuclear fusion reactions cease, the star collapses to produce a supernova. During the supernova, silicon burning produces Ni. This isotope of nickel is favored because it has an equal number of neutrons and protons, making it readily produced by fusing two Si atoms. Ni is the final element that can be formed in the alpha process. Past Ni, nuclear reactions would be endoergic and would be energetically unfavorable. Once Ni is formed it subsequently decays to Co and then Fe by β+ decay. The radioactive decay of  Ni and Co supplies much of the energy for the light curves observed for stellar supernovae. The shape of the light curve of these supernovae display characteristic timescales corresponding to the decay of Ni to Co and then to Fe.

Nickel-58 is the most abundant isotope of nickel, making up 68.077% of the natural abundance. Possible sources include electron capture from copper-58 and EC + p from zinc-59.

Nickel-59 is a long-lived cosmogenic radionuclide with a half-life of 76,000 years.
Ni
has found many applications in isotope geology.
Ni
has been used to date the terrestrial age of meteorites and to determine abundances of extraterrestrial dust in ice and sediment.

Nickel-60 is the daughter product of the extinct radionuclide
Fe
(half-life = 2.6 My). Because
Fe
had such a long half-life, its persistence in materials in the Solar System at high enough concentrations may have generated observable variations in the isotopic composition of
Ni
. Therefore, the abundance of
Ni
present in extraterrestrial material may provide insight into the origin of the Solar System and its early history/very early history. Unfortunately, nickel isotopes appear to have been heterogeneously distributed in the early Solar System. Therefore, so far, no actual age information has been attained from
Ni
excesses.
Ni
is also the stable end-product of the decay of
Zn
, the product of the final rung of the alpha ladder. Other sources may also include beta decay from cobalt-60 and electron capture from copper-60.

Nickel-61 is the only stable isotope of nickel with a nuclear spin (I = 3/2), which makes it useful for studies by EPR spectroscopy.

Nickel-62 has the highest binding energy per nucleon of any isotope for any element, when including the electron shell in the calculation. More energy is released forming this isotope than any other, although fusion can form heavier isotopes. For instance, two
Ca
atoms can fuse to form
Kr
plus 4 positrons (plus 4 neutrinos), liberating 77 keV per nucleon, but reactions leading to the iron/nickel region are more probable as they release more energy per baryon.

Nickel-63 has two main uses: Detection of explosives traces, and in certain kinds of electronic devices, such as gas discharge tubes used as surge protectors. A surge protector is a device that protects sensitive electronic equipment like computers from sudden changes in the electric current flowing into them. It is also used in Electron capture detector in gas chromatography for the detection mainly of halogens. It is proposed to be used for miniature betavoltaic generators for pacemakers.

Nickel-64 is another stable isotope of nickel. Possible sources include beta decay from cobalt-64, and electron capture from copper-64.

Nickel-78 is one of the element's heaviest known isotopes. With 28 protons and 50 neutrons, nickel-78 is doubly magic, resulting in much greater nuclear binding energy and stability despite having a lopsided neutron-proton ratio. It has a half-life of 122 ± 5.1 milliseconds. As a consequence of its magic neutron number, nickel-78 is believed to have an important involvement in supernova nucleosynthesis of elements heavier than iron. Ni, along with N = 50 isotones Cu and Zn, are thought to constitute a waiting point in the r-process, where further neutron capture is delayed by the shell gap and a buildup of isotopes around A = 80 results.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Nickel". CIAAW. 2007.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (4 May 2022). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. "Isotopes of the Element Nickel". Science education. Jefferson Lab.
  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. Sur, Bhaskar; Norman, Eric B.; Lesko, K. T.; Browne, Edgardo; Larimer, Ruth-Mary (1 August 1990). "Reinvestigation of Ni 56 decay". Physical Review C. 42 (2): 573–580. doi:10.1103/PhysRevC.42.573.
  7. I. Gresits; S. Tölgyesi (September 2003). "Determination of soft X-ray emitting isotopes in radioactive liquid wastes of nuclear power plants". Journal of Radioanalytical and Nuclear Chemistry. 258 (1): 107–112. doi:10.1023/A:1026214310645. S2CID 93334310.
  8. ^ Giraud, S.; Canete, L.; Bastin, B.; Kankainen, A.; Fantina, A.F.; Gulminelli, F.; Ascher, P.; Eronen, T.; Girard-Alcindor, V.; Jokinen, A.; Khanam, A.; Moore, I.D.; Nesterenko, D.A.; de Oliveira Santos, F.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; De Roubin, A.; Rubchenya, V.A.; Vilen, M.; Äystö, J. (October 2022). "Mass measurements towards doubly magic 78Ni: Hydrodynamics versus nuclear mass contribution in core-collapse supernovae". Physics Letters B. 833: 137309. doi:10.1016/j.physletb.2022.137309.
  9. "New nuclides included for the first time in the 2017 evaluation" (PDF). Discovery of Nuclides Project. 22 December 2018. Retrieved 22 May 2018.
  10. "Discovery of doubly magic nickel". CERN Courier. 15 March 2000. Retrieved 2 April 2013.
  11. "Twice-magic metal makes its debut | Science News | Find Articles". Archived from the original on 24 May 2012.
  12. Umeda, Hideyuki; Nomoto, Ken’ichi (1 February 2008). "How Much 56Ni Can Be Produced in Core‐Collapse Supernovae? Evolution and Explosions of 30–100M⊙ Stars". The Astrophysical Journal. 673 (2): 1014–1022 – via The Institute of Physics (IOP).
  13. Bouchet, P.; Danziger, I.J.; Lucy, L.B. (September 1991). "Bolometric Light Curve of SN 1987A: Results from Day 616 to 1316 After Outburst". The Astronomical Journal. 102 (3): 1135–1146 – via Astrophysics Data System.
  14. Maurice van Gastel; Wolfgang Lubitz (2009). "EPR Investigation of Hydrogenases". In Graeme Hanson; Lawrence Berliner (eds.). High Resolution EPR: Applications to Metalloenzymes and Metals in Medicine. Dordrecht: Springer. pp. 441–470. ISBN 9780387848563.
  15. Bazin, D. (2017). "Viewpoint: Doubly Magic Nickel". Physics. 10 (121): 121. doi:10.1103/Physics.10.121.
  16. Davide Castelvecchi (22 April 2005). "Atom Smashers Shed Light on Supernovae, Big Bang". Sky & Telescope.
  17. Pereira, J.; Aprahamian, A.; Arndt, O.; Becerril, A.; Elliot, T.; Estrade, A.; Galaviz, D.; Hennrich, S.; Hosmer, P.; Kessler, R.; Kratz, K.-L.; Lorusso, G.; Mantica, P.F.; Matos, M.; Montes, F.; Santi, P.; Pfeiffer, B.; Quinn, M.; Schatz, H.; Schertz, F.; Schnorrenberger, L.; Smith, E.; Tomlin, B.E.; Walters, W.; Wöhr, A. (2009). Beta decay studies of r-process nuclei at the National Superconducting Cyclotron Laboratory. 10th Symposium on Nuclei in the Cosmos. Mackinac Island. arXiv:0901.1802.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: