Misplaced Pages

Integral of secant cubed: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 15:39, 7 April 2020 editNerd271 (talk | contribs)Extended confirmed users15,796 edits More concise.Tag: 2017 wikitext editor← Previous edit Latest revision as of 04:57, 26 September 2024 edit undoDaveRusin2 (talk | contribs)3 edits Reduction to an integral of a rational function: Might as well advertise the universality of the half-tangent technique 
(24 intermediate revisions by 9 users not shown)
Line 1: Line 1:
{{calculus|expanded=integral}}
{{short description|Commonly encountered and tricky integral}} {{short description|Commonly encountered and tricky integral}}
{{calculus|expanded=integral}}


The '''integral of secant cubed''' is a frequent and challenging<ref>{{cite book|last=Spivak|first=Michael|authorlink=Michael Spivak |title=Calculus|url=https://archive.org/details/calculus4thediti00mich|url-access=registration|year=2008|chapter=Integration in Elementary Terms |quote=This is a tricky and important integral that often comes up. |page=}}</ref> ] of elementary ]: The '''integral of secant cubed''' is a frequent and challenging<ref>{{cite book|last=Spivak|first=Michael|authorlink=Michael Spivak |title=Calculus|url=https://archive.org/details/calculus4thediti00mich|url-access=registration|year=2008|chapter=Integration in Elementary Terms |quote=This is a tricky and important integral that often comes up. |page=}}</ref> ] of elementary ]:


:<math display=inline>\begin{align}
:<math>\int \sec^3 x \, dx = \frac{1}{2}(\sec x \tan x + \ln \left|\sec x + \tan x\right|) + C.</math>
\int \sec^3 x \, dx
&= \tfrac12\sec x \tan x + \tfrac12 \int \sec x\, dx + C \\
&= \tfrac12(\sec x \tan x + \ln \left|\sec x + \tan x\right|) + C \\
&= \tfrac12(\sec x \tan x + \operatorname{gd}^{-1} x) + C, \qquad |x| < \tfrac12\pi
\end{align}</math>

where <math display=inline>\operatorname{gd}^{-1}</math> is the inverse ], the ].


There are a number of reasons why this particular antiderivative is worthy of special attention: There are a number of reasons why this particular antiderivative is worthy of special attention:


* The technique used for reducing integrals of higher odd powers of secant to lower ones is fully present in this, the simplest case. The other cases are done in the same way. * The technique used for reducing integrals of higher ] powers of secant to lower ones is fully present in this, the simplest case. The other cases are done in the same way.
* The utility of hyperbolic functions in integration can be demonstrated in cases of odd powers of secant (powers of tangent can also be included). * The utility of ]s in integration can be demonstrated in cases of odd powers of secant (powers of ] can also be included).
* This is one of several integrals usually done in a first-year calculus course in which the most natural way to proceed involves ] and returning to the same integral one started with (another is the integral of the product of an ] with a sine or cosine function; yet another the integral of a power of the sine or cosine function). * This is one of several integrals usually done in a first-year calculus course in which the most natural way to proceed involves ] and returning to the same integral one started with (another is the integral of the product of an ] with a ] or ] function; yet another the integral of a power of the sine or cosine function).
* This integral is used in evaluating any integral of the form * This integral is used in evaluating any integral of the form
:: <math>\int \sqrt{a^2+x^2}\,dx,</math> :: <math>\int \sqrt{a^2+x^2}\,dx,</math>
Line 22: Line 29:
=== Integration by parts === === Integration by parts ===


This ] may be found by ], as follows: This ] may be found by ], as follows:<ref name=":1">{{Cite book|last=Stewart|first=James|authorlink=James Stewart (mathematician)|title=Calculus - Early Transcendentals|publisher=Cengage Learning|year=2012|isbn=978-0-538-49790-9|location=United States|pages=475–6|chapter=Section 7.2: Trigonometric Integrals}}</ref>


:<math> \int \sec^3 x \, dx = \int u\,dv </math> :<math>\int \sec^3 x \, dx = \int u\,dv = uv - \int v \,du</math>


where where


:<math> :<math>
u = \sec x,\quad dv = \sec^2 x\,dx,\quad v
\begin{align}
= \tan x,\quad du = \sec x \tan x\,dx.
dv &{}= \sec^2 x\,dx, \\
v &{}= \tan x, \\
u &{}= \sec x, \\
du &{}= \sec x \tan x\,dx.
\end{align}
</math> </math>


Then Then


:<math> :<math>\begin{align}
\int \sec^3 x \, dx
\begin{align}
\int \sec^3 x \, dx &{}= \int u\,dv \\ &= \int (\sec x)(\sec^2 x)\,dx \\
&{}= uv - \int v\,du \\ &= \sec x \tan x - \int \tan x\,(\sec x \tan x)\,dx \\
&{} = \sec x \tan x - \int \sec x \tan^2 x\,dx \\ &= \sec x \tan x - \int \sec x \tan^2 x\,dx \\
&{}= \sec x \tan x - \int \sec x\, (\sec^2 x - 1)\,dx \\ &= \sec x \tan x - \int \sec x\, (\sec^2 x - 1)\,dx \\
&{}= \sec x \tan x - \left(\int \sec^3 x \, dx - \int \sec x\,dx.\right) \\ &= \sec x \tan x - \left(\int \sec^3 x \, dx - \int \sec x\,dx\right) \\
&{}= \sec x \tan x - \int \sec^3 x \, dx + \int \sec x\,dx. &= \sec x \tan x - \int \sec^3 x \, dx + \int \sec x\,dx.
\end{align} \end{align}</math>

</math>
Next add <math display=inline>\int\sec^3 x \,dx</math> to both sides:{{efn|The ] are absorbed in the remaining integral term.}}

:<math>\begin{align}
2 \int \sec^3 x \, dx
&= \sec x \tan x + \int \sec x\,dx \\
&= \sec x \tan x + \ln\left|\sec x + \tan x\right| + C,
\end{align}</math>


Here we have assumed the ] is known. using the ], <math display=inline>\int \sec x \,dx = \ln \left|\sec x + \tan x\right| + C.</math><ref name=":1" />


Finally, divide both sides by 2:
Next we add <math>\textstyle \int\sec^3 x\,dx</math> to both sides of the equality just derived:{{efn|The constants of integration are absorbed in the remaining integral term.}}


:<math> :<math>
\int \sec^3 x \, dx
\begin{align}
2 \int \sec^3 x \, dx & = \sec x \tan x + \int \sec x\,dx \\ = \tfrac12(\sec x \tan x + \ln \left|\sec x + \tan x\right|) + C,
& = \sec x \tan x + \ln\left|\sec x + \tan x\right| + C.
\end{align}
</math> </math>


which was to be derived.<ref name=":1" /> A possible mnemonic is: "The integral of secant cubed is the average of the derivative and integral of secant".
Then divide both sides by 2:

:<math>\int \sec^3 x \, dx = \frac{1}{2}(\sec x \tan x + \ln \left|\sec x + \tan x\right|) + C.</math>


=== Reduction to an integral of a rational function === === Reduction to an integral of a rational function ===


: <math> :<math>
\int \sec^3 x \, dx = \int \frac{dx}{\cos^3 x} = \int \frac{\cos x\,dx}{\cos^4 x} = \int \frac{\cos x\,dx}{(1-\sin^2 x)^2} = \int \frac{du}{(1-u^2)^2} \int \sec^3 x \, dx
= \int \frac{dx}{\cos^3 x}
= \int \frac{\cos x\,dx}{\cos^4 x}
= \int \frac{\cos x\,dx}{(1-\sin^2 x)^2}
= \int \frac{du}{(1-u^2)^2}
</math> </math>


where <math>u = \sin x</math>, so that <math>du = \cos x\,dx</math>. This admits a decomposition by ]: where <math>u = \sin x</math>, so that <math>du = \cos x\,dx</math>. This admits a decomposition by ]:


:<math>
: <math> \frac{1}{(1-u^2)^2} = \frac{1/4}{1-u} + \frac{1/4}{(1-u)^2} + \frac{1/4}{1+u} + \frac{1/4}{(1+u)^2}. </math>
\frac{1}{(1-u^2)^2}
= \frac{1}{(1+u)^2(1-u)^2}
= \frac{1}{4(1+u)} + \frac{1}{4(1+u)^2} + \frac{1}{4(1-u)} + \frac{1}{4(1-u)^2}.
</math>


Antidifferentiating term-by-term, one gets Antidifferentiating term-by-term, one gets


: <math> :<math>\begin{align}
\int \sec^3 x \, dx
\begin{align}
& -\frac 1 4\ln (1-u) + \frac{1/4}{1-u} + \frac 1 4 \ln(1+u) - \frac{1/4}{1+u} + C = \frac 1 4 \ln \frac{1+u}{1-u} + \frac 1 2 \frac{u}{1-u^2} + C \\ &= \tfrac14 \ln |1+u| - \frac{1}{4(1+u)} - \tfrac14 \ln|1-u| + \frac{1}{4(1-u)} + C \\
= {} & \frac 1 4 \ln\frac{1+\sin x}{1-\sin x} + \frac 1 2 \frac{\sin x}{\cos^2 x} = \frac 1 4 \ln\frac{1+\sin x}{1-\sin x} + \frac 1 2 \sec x \tan x + C. &= \tfrac14 \ln \Biggl| \frac{1+u}{1-u} \Biggl| + \frac{u}{2(1-u^2)} + C \\
&= \tfrac14 \ln \Biggl|\frac{1+\sin x}{1-\sin x} \Biggl| + \frac{\sin x}{2\cos^2 x} + C\\
\end{align}
&= \tfrac14 \ln \left|\frac{1+\sin x}{1-\sin x}\right| + \tfrac12 \sec x \tan x + C \\
&= \tfrac14 \ln \left|\frac{(1+\sin x)^2}{1-\sin^2 x}\right| + \tfrac12 \sec x \tan x + C \\
&= \tfrac14 \ln \left|\frac{(1+\sin x)^2}{\cos^2 x}\right| + \tfrac12 \sec x \tan x + C \\
&= \tfrac12 \ln \left|\frac{1+\sin x}{\cos x}\right| + \tfrac12 \sec x \tan x + C \\
&= \tfrac12 (\ln|\sec x + \tan x| + \sec x \tan x) + C.
\end{align}</math>

Alternatively, one may use the ] for any rational function of trigonometric functions; for this particular integrand, that method leads to the integration of

:<math>
\frac{2(1+u^2)^2}{(1-u^2)^3}
= \frac{1}{2(1+u)} - \frac{1}{2(1+u)^2} + \frac{1}{(1+u)^3} + \frac{1}{2(1-u)} - \frac{1}{2(1-u)^2} + \frac{1}{(1-u)^3}.
</math> </math>


=== Hyperbolic functions === === Hyperbolic functions ===


Integrals of the form: <math> \int \sec^n x \tan^m x\, dx </math> can be reduced using the Pythagorean identity if ''n'' is even or ''n'' and ''m'' are both odd. If ''n'' is odd and ''m'' is even, hyperbolic substitutions can be used to replace the nested integration by parts with hyperbolic power reducing formulas. Integrals of the form: <math>\int \sec^n x \tan^m x\, dx</math> can be reduced using the ] if <math>n</math> is ] or <math>n</math> and <math>m</math> are both odd. If <math>n</math> is odd and <math>m</math> is even, hyperbolic substitutions can be used to replace the nested integration by parts with hyperbolic power-reducing formulas.


:<math> :<math>\begin{align}
\sec x &= \cosh u \\
\begin{align}
\sec x &{}= \cosh u \\ \tan x &= \sinh u \\
\tan x &{}= \sinh u \\ \sec^2 x \, dx &= \cosh u \, du \text{ or } \sec x \tan x\, dx = \sinh u \, du \\
\sec^2 x \, dx &{}= \cosh u \, du \text{ or } \sec x \tan x\, dx = \sinh u \, du\\ \sec x \, dx &= \, du \text{ or } dx = \operatorname{sech} u \, du \\
\sec x \, dx &{}= \, du \text{ or } dx = \operatorname{sech} u \, du \\ u &= \operatorname{arcosh} (\sec x ) = \operatorname{arsinh} ( \tan x ) = \ln|\sec x + \tan x|
\end{align}</math>
u &{}= \operatorname{arcosh} (\sec x ) = \operatorname{arsinh} ( \tan x ) = \ln|\sec x + \tan x|
\end{align}
</math>


Note that <math> \int \sec x \, dx = \ln|\sec x + \tan x| </math> follows directly from this substitution. Note that <math>\int \sec x \, dx = \ln|\sec x + \tan x|</math> follows directly from this substitution.


:<math> :<math>\begin{align}
\int \sec^3 x \, dx
\begin{align}
\int \sec^3 x \, dx &{}= \int \cosh^2 u\,du \\ &= \int \cosh^2 u\,du \\
&{}= \frac{1}{2}\int ( \cosh 2u +1) \,du \\ &= \tfrac12 \int ( \cosh 2u +1) \,du \\
&{}= \frac{1}{2} \left( \frac{1}{2}\sinh2u + u\right) + C\\ &= \tfrac12 \left( \tfrac12 \sinh2u + u\right) + C\\
&{}= \frac{1}{2} ( \sinh u \cosh u + u ) + C \\ &= \tfrac12 ( \sinh u \cosh u + u ) + C \\
&{}= \frac{1}{2}(\sec x \tan x + \ln \left|\sec x + \tan x\right|) + C\\ &= \tfrac12 (\sec x \tan x + \ln \left|\sec x + \tan x\right|) + C
\end{align} \end{align}</math>
</math>


== Higher odd powers of secant == == Higher odd powers of secant ==
Line 114: Line 137:
Just as the integration by parts above reduced the integral of secant cubed to the integral of secant to the first power, so a similar process reduces the integral of higher odd powers of secant to lower ones. This is the secant reduction formula, which follows the syntax: Just as the integration by parts above reduced the integral of secant cubed to the integral of secant to the first power, so a similar process reduces the integral of higher odd powers of secant to lower ones. This is the secant reduction formula, which follows the syntax:


:<math>
: <math> \int \sec^n x \, dx = \frac{\sec^{n-2} x \tan x}{n-1} \,+\, \frac{n-2}{n-1}\int \sec^{n-2} x \, dx \qquad \text{ (for }n \ne 1\text{)}\,\! </math>
\int \sec^n x \, dx

= \frac{\sec^{n-2} x \tan x}{n-1} \,+\, \frac{n-2}{n-1}\int \sec^{n-2} x \, dx \qquad \text{ (for }n \ne 1\text{)}\,\!
Alternatively:
</math>

: <math> \int \sec^n x \, dx = \frac{\sec^{n-1} x \sin x}{n-1} \,+\, \frac{n-2}{n-1}\int \sec^{n-2} x \, dx \qquad \text{ (for }n \ne 1\text{)}\,\! </math>


Even powers of tangents can be accommodated by using binomial expansion to form an odd polynomial of secant and using these formulae on the largest term and combining like terms. Even powers of tangents can be accommodated by using ] to form an odd ] of secant and using these formulae on the largest term and combining like terms.


== See also == == See also ==
Line 132: Line 154:
{{reflist}} {{reflist}}


{{Calculus topics}}
{{DEFAULTSORT:Integral Of Secant Cubed}}

] ]

Latest revision as of 04:57, 26 September 2024

Commonly encountered and tricky integral
Part of a series of articles about
Calculus
a b f ( t ) d t = f ( b ) f ( a ) {\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}
Differential
Definitions
Concepts
Rules and identities
Integral
Definitions
Integration by
Series
Convergence tests
Vector
Theorems
Multivariable
Formalisms
Definitions
Advanced
Specialized
Miscellanea

The integral of secant cubed is a frequent and challenging indefinite integral of elementary calculus:

sec 3 x d x = 1 2 sec x tan x + 1 2 sec x d x + C = 1 2 ( sec x tan x + ln | sec x + tan x | ) + C = 1 2 ( sec x tan x + gd 1 x ) + C , | x | < 1 2 π {\textstyle {\begin{aligned}\int \sec ^{3}x\,dx&={\tfrac {1}{2}}\sec x\tan x+{\tfrac {1}{2}}\int \sec x\,dx+C\\&={\tfrac {1}{2}}(\sec x\tan x+\ln \left|\sec x+\tan x\right|)+C\\&={\tfrac {1}{2}}(\sec x\tan x+\operatorname {gd} ^{-1}x)+C,\qquad |x|<{\tfrac {1}{2}}\pi \end{aligned}}}

where gd 1 {\textstyle \operatorname {gd} ^{-1}} is the inverse Gudermannian function, the integral of the secant function.

There are a number of reasons why this particular antiderivative is worthy of special attention:

  • The technique used for reducing integrals of higher odd powers of secant to lower ones is fully present in this, the simplest case. The other cases are done in the same way.
  • The utility of hyperbolic functions in integration can be demonstrated in cases of odd powers of secant (powers of tangent can also be included).
  • This is one of several integrals usually done in a first-year calculus course in which the most natural way to proceed involves integrating by parts and returning to the same integral one started with (another is the integral of the product of an exponential function with a sine or cosine function; yet another the integral of a power of the sine or cosine function).
  • This integral is used in evaluating any integral of the form
a 2 + x 2 d x , {\displaystyle \int {\sqrt {a^{2}+x^{2}}}\,dx,}
where a {\displaystyle a} is a constant. In particular, it appears in the problems of:

Derivations

Integration by parts

This antiderivative may be found by integration by parts, as follows:

sec 3 x d x = u d v = u v v d u {\displaystyle \int \sec ^{3}x\,dx=\int u\,dv=uv-\int v\,du}

where

u = sec x , d v = sec 2 x d x , v = tan x , d u = sec x tan x d x . {\displaystyle u=\sec x,\quad dv=\sec ^{2}x\,dx,\quad v=\tan x,\quad du=\sec x\tan x\,dx.}

Then

sec 3 x d x = ( sec x ) ( sec 2 x ) d x = sec x tan x tan x ( sec x tan x ) d x = sec x tan x sec x tan 2 x d x = sec x tan x sec x ( sec 2 x 1 ) d x = sec x tan x ( sec 3 x d x sec x d x ) = sec x tan x sec 3 x d x + sec x d x . {\displaystyle {\begin{aligned}\int \sec ^{3}x\,dx&=\int (\sec x)(\sec ^{2}x)\,dx\\&=\sec x\tan x-\int \tan x\,(\sec x\tan x)\,dx\\&=\sec x\tan x-\int \sec x\tan ^{2}x\,dx\\&=\sec x\tan x-\int \sec x\,(\sec ^{2}x-1)\,dx\\&=\sec x\tan x-\left(\int \sec ^{3}x\,dx-\int \sec x\,dx\right)\\&=\sec x\tan x-\int \sec ^{3}x\,dx+\int \sec x\,dx.\end{aligned}}}

Next add sec 3 x d x {\textstyle \int \sec ^{3}x\,dx} to both sides:

2 sec 3 x d x = sec x tan x + sec x d x = sec x tan x + ln | sec x + tan x | + C , {\displaystyle {\begin{aligned}2\int \sec ^{3}x\,dx&=\sec x\tan x+\int \sec x\,dx\\&=\sec x\tan x+\ln \left|\sec x+\tan x\right|+C,\end{aligned}}}

using the integral of the secant function, sec x d x = ln | sec x + tan x | + C . {\textstyle \int \sec x\,dx=\ln \left|\sec x+\tan x\right|+C.}

Finally, divide both sides by 2:

sec 3 x d x = 1 2 ( sec x tan x + ln | sec x + tan x | ) + C , {\displaystyle \int \sec ^{3}x\,dx={\tfrac {1}{2}}(\sec x\tan x+\ln \left|\sec x+\tan x\right|)+C,}

which was to be derived. A possible mnemonic is: "The integral of secant cubed is the average of the derivative and integral of secant".

Reduction to an integral of a rational function

sec 3 x d x = d x cos 3 x = cos x d x cos 4 x = cos x d x ( 1 sin 2 x ) 2 = d u ( 1 u 2 ) 2 {\displaystyle \int \sec ^{3}x\,dx=\int {\frac {dx}{\cos ^{3}x}}=\int {\frac {\cos x\,dx}{\cos ^{4}x}}=\int {\frac {\cos x\,dx}{(1-\sin ^{2}x)^{2}}}=\int {\frac {du}{(1-u^{2})^{2}}}}

where u = sin x {\displaystyle u=\sin x} , so that d u = cos x d x {\displaystyle du=\cos x\,dx} . This admits a decomposition by partial fractions:

1 ( 1 u 2 ) 2 = 1 ( 1 + u ) 2 ( 1 u ) 2 = 1 4 ( 1 + u ) + 1 4 ( 1 + u ) 2 + 1 4 ( 1 u ) + 1 4 ( 1 u ) 2 . {\displaystyle {\frac {1}{(1-u^{2})^{2}}}={\frac {1}{(1+u)^{2}(1-u)^{2}}}={\frac {1}{4(1+u)}}+{\frac {1}{4(1+u)^{2}}}+{\frac {1}{4(1-u)}}+{\frac {1}{4(1-u)^{2}}}.}

Antidifferentiating term-by-term, one gets

sec 3 x d x = 1 4 ln | 1 + u | 1 4 ( 1 + u ) 1 4 ln | 1 u | + 1 4 ( 1 u ) + C = 1 4 ln | 1 + u 1 u | + u 2 ( 1 u 2 ) + C = 1 4 ln | 1 + sin x 1 sin x | + sin x 2 cos 2 x + C = 1 4 ln | 1 + sin x 1 sin x | + 1 2 sec x tan x + C = 1 4 ln | ( 1 + sin x ) 2 1 sin 2 x | + 1 2 sec x tan x + C = 1 4 ln | ( 1 + sin x ) 2 cos 2 x | + 1 2 sec x tan x + C = 1 2 ln | 1 + sin x cos x | + 1 2 sec x tan x + C = 1 2 ( ln | sec x + tan x | + sec x tan x ) + C . {\displaystyle {\begin{aligned}\int \sec ^{3}x\,dx&={\tfrac {1}{4}}\ln |1+u|-{\frac {1}{4(1+u)}}-{\tfrac {1}{4}}\ln |1-u|+{\frac {1}{4(1-u)}}+C\\&={\tfrac {1}{4}}\ln {\Biggl |}{\frac {1+u}{1-u}}{\Biggl |}+{\frac {u}{2(1-u^{2})}}+C\\&={\tfrac {1}{4}}\ln {\Biggl |}{\frac {1+\sin x}{1-\sin x}}{\Biggl |}+{\frac {\sin x}{2\cos ^{2}x}}+C\\&={\tfrac {1}{4}}\ln \left|{\frac {1+\sin x}{1-\sin x}}\right|+{\tfrac {1}{2}}\sec x\tan x+C\\&={\tfrac {1}{4}}\ln \left|{\frac {(1+\sin x)^{2}}{1-\sin ^{2}x}}\right|+{\tfrac {1}{2}}\sec x\tan x+C\\&={\tfrac {1}{4}}\ln \left|{\frac {(1+\sin x)^{2}}{\cos ^{2}x}}\right|+{\tfrac {1}{2}}\sec x\tan x+C\\&={\tfrac {1}{2}}\ln \left|{\frac {1+\sin x}{\cos x}}\right|+{\tfrac {1}{2}}\sec x\tan x+C\\&={\tfrac {1}{2}}(\ln |\sec x+\tan x|+\sec x\tan x)+C.\end{aligned}}}

Alternatively, one may use the tangent half-angle substitution for any rational function of trigonometric functions; for this particular integrand, that method leads to the integration of

2 ( 1 + u 2 ) 2 ( 1 u 2 ) 3 = 1 2 ( 1 + u ) 1 2 ( 1 + u ) 2 + 1 ( 1 + u ) 3 + 1 2 ( 1 u ) 1 2 ( 1 u ) 2 + 1 ( 1 u ) 3 . {\displaystyle {\frac {2(1+u^{2})^{2}}{(1-u^{2})^{3}}}={\frac {1}{2(1+u)}}-{\frac {1}{2(1+u)^{2}}}+{\frac {1}{(1+u)^{3}}}+{\frac {1}{2(1-u)}}-{\frac {1}{2(1-u)^{2}}}+{\frac {1}{(1-u)^{3}}}.}

Hyperbolic functions

Integrals of the form: sec n x tan m x d x {\displaystyle \int \sec ^{n}x\tan ^{m}x\,dx} can be reduced using the Pythagorean identity if n {\displaystyle n} is even or n {\displaystyle n} and m {\displaystyle m} are both odd. If n {\displaystyle n} is odd and m {\displaystyle m} is even, hyperbolic substitutions can be used to replace the nested integration by parts with hyperbolic power-reducing formulas.

sec x = cosh u tan x = sinh u sec 2 x d x = cosh u d u  or  sec x tan x d x = sinh u d u sec x d x = d u  or  d x = sech u d u u = arcosh ( sec x ) = arsinh ( tan x ) = ln | sec x + tan x | {\displaystyle {\begin{aligned}\sec x&=\cosh u\\\tan x&=\sinh u\\\sec ^{2}x\,dx&=\cosh u\,du{\text{ or }}\sec x\tan x\,dx=\sinh u\,du\\\sec x\,dx&=\,du{\text{ or }}dx=\operatorname {sech} u\,du\\u&=\operatorname {arcosh} (\sec x)=\operatorname {arsinh} (\tan x)=\ln |\sec x+\tan x|\end{aligned}}}

Note that sec x d x = ln | sec x + tan x | {\displaystyle \int \sec x\,dx=\ln |\sec x+\tan x|} follows directly from this substitution.

sec 3 x d x = cosh 2 u d u = 1 2 ( cosh 2 u + 1 ) d u = 1 2 ( 1 2 sinh 2 u + u ) + C = 1 2 ( sinh u cosh u + u ) + C = 1 2 ( sec x tan x + ln | sec x + tan x | ) + C {\displaystyle {\begin{aligned}\int \sec ^{3}x\,dx&=\int \cosh ^{2}u\,du\\&={\tfrac {1}{2}}\int (\cosh 2u+1)\,du\\&={\tfrac {1}{2}}\left({\tfrac {1}{2}}\sinh 2u+u\right)+C\\&={\tfrac {1}{2}}(\sinh u\cosh u+u)+C\\&={\tfrac {1}{2}}(\sec x\tan x+\ln \left|\sec x+\tan x\right|)+C\end{aligned}}}

Higher odd powers of secant

Just as the integration by parts above reduced the integral of secant cubed to the integral of secant to the first power, so a similar process reduces the integral of higher odd powers of secant to lower ones. This is the secant reduction formula, which follows the syntax:

sec n x d x = sec n 2 x tan x n 1 + n 2 n 1 sec n 2 x d x  (for  n 1 ) {\displaystyle \int \sec ^{n}x\,dx={\frac {\sec ^{n-2}x\tan x}{n-1}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}x\,dx\qquad {\text{ (for }}n\neq 1{\text{)}}\,\!}

Even powers of tangents can be accommodated by using binomial expansion to form an odd polynomial of secant and using these formulae on the largest term and combining like terms.

See also

Notes

  1. The constants of integration are absorbed in the remaining integral term.

References

  1. Spivak, Michael (2008). "Integration in Elementary Terms". Calculus. p. 382. This is a tricky and important integral that often comes up.
  2. ^ Stewart, James (2012). "Section 7.2: Trigonometric Integrals". Calculus - Early Transcendentals. United States: Cengage Learning. pp. 475–6. ISBN 978-0-538-49790-9.
Calculus
Precalculus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Integrals
Miscellaneous topics
Category: