Misplaced Pages

Integral of secant cubed: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 01:48, 1 February 2023 editJacobolus (talk | contribs)Extended confirmed users35,709 edits this 'alternative' of replacing tan(x) with sec(x)sin(x) is not worth the space it takes; removing it. also split some math markup onto multiple lines for legibility← Previous edit Revision as of 03:14, 28 August 2023 edit undoJohn helvetius (talk | contribs)4 editsNo edit summaryNext edit →
Line 69: Line 69:
</math> </math>


which was to be derived.<ref name=":1" /> which was to be derived.<ref name=":1" /> A possible mnemonic is: "The integral of secant cubed is the average of the derivate and integral of secant".


=== Reduction to an integral of a rational function === === Reduction to an integral of a rational function ===

Revision as of 03:14, 28 August 2023

Part of a series of articles about
Calculus
a b f ( t ) d t = f ( b ) f ( a ) {\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}
Differential
Definitions
Concepts
Rules and identities
Integral
Definitions
Integration by
Series
Convergence tests
Vector
Theorems
Multivariable
Formalisms
Definitions
Advanced
Specialized
Miscellanea
Commonly encountered and tricky integral

The integral of secant cubed is a frequent and challenging indefinite integral of elementary calculus:

sec 3 x d x = 1 2 sec x tan x + 1 2 sec x d x + C = 1 2 ( sec x tan x + ln | sec x + tan x | ) + C = 1 2 ( sec x tan x + gd 1 x ) + C , | x | < 1 2 π {\textstyle {\begin{aligned}\int \sec ^{3}x\,dx&={\tfrac {1}{2}}\sec x\tan x+{\tfrac {1}{2}}\int \sec x\,dx+C\\&={\tfrac {1}{2}}(\sec x\tan x+\ln \left|\sec x+\tan x\right|)+C\\&={\tfrac {1}{2}}(\sec x\tan x+\operatorname {gd} ^{-1}x)+C,\qquad |x|<{\tfrac {1}{2}}\pi \end{aligned}}}

where gd 1 {\textstyle \operatorname {gd} ^{-1}} is the inverse Gudermannian function, the integral of the secant function.

There are a number of reasons why this particular antiderivative is worthy of special attention:

  • The technique used for reducing integrals of higher odd powers of secant to lower ones is fully present in this, the simplest case. The other cases are done in the same way.
  • The utility of hyperbolic functions in integration can be demonstrated in cases of odd powers of secant (powers of tangent can also be included).
  • This is one of several integrals usually done in a first-year calculus course in which the most natural way to proceed involves integrating by parts and returning to the same integral one started with (another is the integral of the product of an exponential function with a sine or cosine function; yet another the integral of a power of the sine or cosine function).
  • This integral is used in evaluating any integral of the form
a 2 + x 2 d x , {\displaystyle \int {\sqrt {a^{2}+x^{2}}}\,dx,}
where a {\displaystyle a} is a constant. In particular, it appears in the problems of:

Derivations

Integration by parts

This antiderivative may be found by integration by parts, as follows:

sec 3 x d x = u d v = u v v d u {\displaystyle \int \sec ^{3}x\,dx=\int u\,dv=uv-\int v\,du}

where

u = sec x , d v = sec 2 x d x , v = tan x , d u = sec x tan x d x . {\displaystyle u=\sec x,\quad dv=\sec ^{2}x\,dx,\quad v=\tan x,\quad du=\sec x\tan x\,dx.}

Then

sec 3 x d x = ( sec x ) ( sec 2 x ) d x = sec x tan x tan x ( sec x tan x ) d x = sec x tan x sec x tan 2 x d x = sec x tan x sec x ( sec 2 x 1 ) d x = sec x tan x ( sec 3 x d x sec x d x ) = sec x tan x sec 3 x d x + sec x d x . {\displaystyle {\begin{aligned}\int \sec ^{3}x\,dx&=\int (\sec x)(\sec ^{2}x)\,dx\\&=\sec x\tan x-\int \tan x\,(\sec x\tan x)\,dx\\&=\sec x\tan x-\int \sec x\tan ^{2}x\,dx\\&=\sec x\tan x-\int \sec x\,(\sec ^{2}x-1)\,dx\\&=\sec x\tan x-\left(\int \sec ^{3}x\,dx-\int \sec x\,dx\right)\\&=\sec x\tan x-\int \sec ^{3}x\,dx+\int \sec x\,dx.\end{aligned}}}

Next add sec 3 x d x {\textstyle \int \sec ^{3}x\,dx} to both sides:

2 sec 3 x d x = sec x tan x + sec x d x = sec x tan x + ln | sec x + tan x | + C , {\displaystyle {\begin{aligned}2\int \sec ^{3}x\,dx&=\sec x\tan x+\int \sec x\,dx\\&=\sec x\tan x+\ln \left|\sec x+\tan x\right|+C,\end{aligned}}}

using the integral of the secant function, sec x d x = ln | sec x + tan x | + C . {\textstyle \int \sec x\,dx=\ln \left|\sec x+\tan x\right|+C.}

Finally, divide both sides by 2:

sec 3 x d x = 1 2 ( sec x tan x + ln | sec x + tan x | ) + C , {\displaystyle \int \sec ^{3}x\,dx={\tfrac {1}{2}}(\sec x\tan x+\ln \left|\sec x+\tan x\right|)+C,}

which was to be derived. A possible mnemonic is: "The integral of secant cubed is the average of the derivate and integral of secant".

Reduction to an integral of a rational function

sec 3 x d x = d x cos 3 x = cos x d x cos 4 x = cos x d x ( 1 sin 2 x ) 2 = d u ( 1 u 2 ) 2 {\displaystyle \int \sec ^{3}x\,dx=\int {\frac {dx}{\cos ^{3}x}}=\int {\frac {\cos x\,dx}{\cos ^{4}x}}=\int {\frac {\cos x\,dx}{(1-\sin ^{2}x)^{2}}}=\int {\frac {du}{(1-u^{2})^{2}}}}

where u = sin x {\displaystyle u=\sin x} , so that d u = cos x d x {\displaystyle du=\cos x\,dx} . This admits a decomposition by partial fractions:

1 ( 1 u 2 ) 2 = 1 ( 1 + u ) 2 ( 1 u ) 2 = 1 4 ( 1 + u ) + 1 4 ( 1 + u ) 2 + 1 4 ( 1 u ) + 1 4 ( 1 u ) 2 . {\displaystyle {\frac {1}{(1-u^{2})^{2}}}={\frac {1}{(1+u)^{2}(1-u)^{2}}}={\frac {1}{4(1+u)}}+{\frac {1}{4(1+u)^{2}}}+{\frac {1}{4(1-u)}}+{\frac {1}{4(1-u)^{2}}}.}

Antidifferentiating term-by-term, one gets

sec 3 x d x = 1 4 ln | 1 + u | 1 4 ( 1 + u ) 1 4 ln | 1 u | + 1 4 ( 1 u ) + C = 1 4 ln | 1 + u 1 u | + u 2 ( 1 u 2 ) + C = 1 4 ln | 1 + sin x 1 sin x | + sin x 2 cos 2 x + C = 1 4 ln | 1 + sin x 1 sin x | + 1 2 sec x tan x + C = 1 4 ln | ( 1 + sin x ) 2 1 sin 2 x | + 1 2 sec x tan x + C = 1 4 ln | ( 1 + sin x ) 2 cos 2 x | + 1 2 sec x tan x + C = 1 2 ln | 1 + sin x cos x | + 1 2 sec x tan x + C = 1 2 ( ln | sec x + tan x | + sec x tan x ) + C . {\displaystyle {\begin{aligned}\int \sec ^{3}x\,dx&={\tfrac {1}{4}}\ln |1+u|-{\frac {1}{4(1+u)}}-{\tfrac {1}{4}}\ln |1-u|+{\frac {1}{4(1-u)}}+C\\&={\tfrac {1}{4}}\ln {\Biggl |}{\frac {1+u}{1-u}}{\Biggl |}+{\frac {u}{2(1-u^{2})}}+C\\&={\tfrac {1}{4}}\ln {\Biggl |}{\frac {1+\sin x}{1-\sin x}}{\Biggl |}+{\frac {\sin x}{2\cos ^{2}x}}+C\\&={\tfrac {1}{4}}\ln \left|{\frac {1+\sin x}{1-\sin x}}\right|+{\tfrac {1}{2}}\sec x\tan x+C\\&={\tfrac {1}{4}}\ln \left|{\frac {(1+\sin x)^{2}}{1-\sin ^{2}x}}\right|+{\tfrac {1}{2}}\sec x\tan x+C\\&={\tfrac {1}{4}}\ln \left|{\frac {(1+\sin x)^{2}}{\cos ^{2}x}}\right|+{\tfrac {1}{2}}\sec x\tan x+C\\&={\tfrac {1}{2}}\ln \left|{\frac {1+\sin x}{\cos x}}\right|+{\tfrac {1}{2}}\sec x\tan x+C\\&={\tfrac {1}{2}}(\ln |\sec x+\tan x|+\sec x\tan x)+C.\end{aligned}}}

Hyperbolic functions

Integrals of the form: sec n x tan m x d x {\displaystyle \int \sec ^{n}x\tan ^{m}x\,dx} can be reduced using the Pythagorean identity if n {\displaystyle n} is even or n {\displaystyle n} and m {\displaystyle m} are both odd. If n {\displaystyle n} is odd and m {\displaystyle m} is even, hyperbolic substitutions can be used to replace the nested integration by parts with hyperbolic power-reducing formulas.

sec x = cosh u tan x = sinh u sec 2 x d x = cosh u d u  or  sec x tan x d x = sinh u d u sec x d x = d u  or  d x = sech u d u u = arcosh ( sec x ) = arsinh ( tan x ) = ln | sec x + tan x | {\displaystyle {\begin{aligned}\sec x&=\cosh u\\\tan x&=\sinh u\\\sec ^{2}x\,dx&=\cosh u\,du{\text{ or }}\sec x\tan x\,dx=\sinh u\,du\\\sec x\,dx&=\,du{\text{ or }}dx=\operatorname {sech} u\,du\\u&=\operatorname {arcosh} (\sec x)=\operatorname {arsinh} (\tan x)=\ln |\sec x+\tan x|\end{aligned}}}

Note that sec x d x = ln | sec x + tan x | {\displaystyle \int \sec x\,dx=\ln |\sec x+\tan x|} follows directly from this substitution.

sec 3 x d x = cosh 2 u d u = 1 2 ( cosh 2 u + 1 ) d u = 1 2 ( 1 2 sinh 2 u + u ) + C = 1 2 ( sinh u cosh u + u ) + C = 1 2 ( sec x tan x + ln | sec x + tan x | ) + C {\displaystyle {\begin{aligned}\int \sec ^{3}x\,dx&=\int \cosh ^{2}u\,du\\&={\tfrac {1}{2}}\int (\cosh 2u+1)\,du\\&={\tfrac {1}{2}}\left({\tfrac {1}{2}}\sinh 2u+u\right)+C\\&={\tfrac {1}{2}}(\sinh u\cosh u+u)+C\\&={\tfrac {1}{2}}(\sec x\tan x+\ln \left|\sec x+\tan x\right|)+C\end{aligned}}}

Higher odd powers of secant

Just as the integration by parts above reduced the integral of secant cubed to the integral of secant to the first power, so a similar process reduces the integral of higher odd powers of secant to lower ones. This is the secant reduction formula, which follows the syntax:

sec n x d x = sec n 2 x tan x n 1 + n 2 n 1 sec n 2 x d x  (for  n 1 ) {\displaystyle \int \sec ^{n}x\,dx={\frac {\sec ^{n-2}x\tan x}{n-1}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}x\,dx\qquad {\text{ (for }}n\neq 1{\text{)}}\,\!}

Even powers of tangents can be accommodated by using binomial expansion to form an odd polynomial of secant and using these formulae on the largest term and combining like terms.

See also

Notes

  1. The constants of integration are absorbed in the remaining integral term.

References

  1. Spivak, Michael (2008). "Integration in Elementary Terms". Calculus. p. 382. This is a tricky and important integral that often comes up.
  2. ^ Stewart, James (2012). "Section 7.2: Trigonometric Integrals". Calculus - Early Transcendentals. United States: Cengage Learning. pp. 475–6. ISBN 978-0-538-49790-9.
Calculus
Precalculus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Integrals
Miscellaneous topics
Category: