Misplaced Pages

Descartes number: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 04:24, 19 June 2015 edit137.82.118.155 (talk) review← Previous edit Revision as of 23:00, 27 July 2015 edit undoBG19bot (talk | contribs)1,005,055 editsm WP:CHECKWIKI error fix for #61. Punctuation goes before References. Do general fixes if a problem exists. - using AWBNext edit →
Line 1: Line 1:
In number theory<!--mathematics-->, a '''Descartes number''' is an odd number which would have been an ], if one of its composite factors were prime. They are named after ] who observed that the number {{math| ''D'' {{=}} 3<sup>2</sup>⋅7<sup>2</sup>⋅11<sup>2</sup>⋅13<sup>2</sup>⋅22021 {{=}} (3⋅1001)<sup>2</sup>⋅(22⋅1001 − 1) {{=}} 198585576189 }} would be an ] if only {{math| 22021 }} were a ], since the ] for {{math| ''D'' }} would satisfy, if 22021 were prime, In number theory<!--mathematics-->, a '''Descartes number''' is an odd number which would have been an ], if one of its composite factors were prime. They are named after ] who observed that the number {{math| ''D'' {{=}} 3<sup>2</sup>⋅7<sup>2</sup>⋅11<sup>2</sup>⋅13<sup>2</sup>⋅22021 {{=}} (3⋅1001)<sup>2</sup>⋅(22⋅1001 − 1) {{=}} 198585576189 }} would be an ] if only {{math| 22021 }} were a ], since the ] for {{math| ''D'' }} would satisfy, if 22021 were prime,


:<math>\begin{align} :<math>\begin{align}
Line 8: Line 8:
\end{align}</math> \end{align}</math>


where we turn a blind eye to the fact that {{math| 19<sup>2</sup>⋅61 {{=}} 22021 }} reveals that 22021 is ]! where we turn a blind eye to the fact that {{math| 19<sup>2</sup>⋅61 {{=}} 22021 }} reveals that 22021 is ]!


A Descartes number is defined as an odd number {{math| ''n'' {{=}} ''m''⋅''p'' }} where {{math| ''m'' }} and {{math| ''p'' }} are ] and {{math| 2''n'' {{=}} σ(''m'')⋅(''p'' + 1) }}, whence {{math| ''p'' }} is taken as a 'spoof' prime. The example given is the only one currently known. A Descartes number is defined as an odd number {{math| ''n'' {{=}} ''m''⋅''p'' }} where {{math| ''m'' }} and {{math| ''p'' }} are ] and {{math| 2''n'' {{=}} σ(''m'')⋅(''p'' + 1) }}, whence {{math| ''p'' }} is taken as a 'spoof' prime. The example given is the only one currently known.


If {{math| ''m'' }} is an odd ]<ref>Currently, the only known almost perfect numbers are the nonnegative powers of 2, whence the only known odd almost perfect number is {{math| 2<sup>0</sup> {{=}} 1. }}</ref>, that is, {{math| σ(''m'') {{=}} 2''m'' − 1 }} and {{math| 2''m'' − 1 }} is taken as a 'spoof' prime, then {{math| ''n'' {{=}} ''m''⋅(2''m'' − 1) }} is a Descartes number, since {{math| σ(''n'') {{=}} σ(''m''⋅(2''m'' − 1)) {{=}} σ(''m'')⋅2''m'' {{=}} (2''m'' − 1)⋅2''m'' {{=}} 2''n'' }}. If {{math| 2''m'' − 1 }} were prime, {{math| ''n'' }} would be an odd perfect number! If {{math| ''m'' }} is an odd ],<ref>Currently, the only known almost perfect numbers are the nonnegative powers of 2, whence the only known odd almost perfect number is {{math| 2<sup>0</sup> {{=}} 1. }}</ref> that is, {{math| σ(''m'') {{=}} 2''m'' − 1 }} and {{math| 2''m'' − 1 }} is taken as a 'spoof' prime, then {{math| ''n'' {{=}} ''m''⋅(2''m'' − 1) }} is a Descartes number, since {{math| σ(''n'') {{=}} σ(''m''⋅(2''m'' − 1)) {{=}} σ(''m'')⋅2''m'' {{=}} (2''m'' − 1)⋅2''m'' {{=}} 2''n'' }}. If {{math| 2''m'' − 1 }} were prime, {{math| ''n'' }} would be an odd perfect number!


==Notes== ==Notes==
Line 20: Line 20:
* {{cite book | last1=Banks | first1=William D. | last2=Güloğlu | first2=Ahmet M. | last3=Nevans | first3=C. Wesley | last4=Saidak | first4=Filip | chapter=Descartes numbers | pages=167–173 | editor1-last=De Koninck | editor1-first=Jean-Marie | editor1-link=Jean-Marie De Koninck | editor2-last=Granville | editor2-first=Andrew | editor2-link=Andrew Granville | editor3-last=Luca | editor3-first=Florian | title=Anatomy of integers. Based on the CRM workshop, Montreal, Canada, March 13--17, 2006 | location=Providence, RI | publisher=] | series=CRM Proceedings and Lecture Notes | volume=46 | year=2008 | isbn=978-0-8218-4406-9 | zbl=1186.11004 }} * {{cite book | last1=Banks | first1=William D. | last2=Güloğlu | first2=Ahmet M. | last3=Nevans | first3=C. Wesley | last4=Saidak | first4=Filip | chapter=Descartes numbers | pages=167–173 | editor1-last=De Koninck | editor1-first=Jean-Marie | editor1-link=Jean-Marie De Koninck | editor2-last=Granville | editor2-first=Andrew | editor2-link=Andrew Granville | editor3-last=Luca | editor3-first=Florian | title=Anatomy of integers. Based on the CRM workshop, Montreal, Canada, March 13--17, 2006 | location=Providence, RI | publisher=] | series=CRM Proceedings and Lecture Notes | volume=46 | year=2008 | isbn=978-0-8218-4406-9 | zbl=1186.11004 }}
* {{cite book | last1=Klee | first1=Victor | author-link1=Victor Klee | last2=Wagon | first2=Stan | author-link2=Stan Wagon | title=Old and new unsolved problems in plane geometry and number theory | series=The Dolciani Mathematical Expositions | volume=11 | location=Washington, DC | publisher=] | year=1991 | isbn=0-88385-315-9 | zbl=0784.51002 }} * {{cite book | last1=Klee | first1=Victor | author-link1=Victor Klee | last2=Wagon | first2=Stan | author-link2=Stan Wagon | title=Old and new unsolved problems in plane geometry and number theory | series=The Dolciani Mathematical Expositions | volume=11 | location=Washington, DC | publisher=] | year=1991 | isbn=0-88385-315-9 | zbl=0784.51002 }}

{{Classes of natural numbers}}


] ]
] ]



{{Classes of natural numbers}}
{{numtheory-stub}} {{numtheory-stub}}

Revision as of 23:00, 27 July 2015

In number theory, a Descartes number is an odd number which would have been an odd perfect number, if one of its composite factors were prime. They are named after René Descartes who observed that the number D = 3⋅7⋅11⋅13⋅22021 = (3⋅1001)⋅(22⋅1001 − 1) = 198585576189 would be an odd perfect number if only 22021 were a prime number, since the sum-of-divisors function for D would satisfy, if 22021 were prime,

σ ( D ) = ( 3 2 + 3 + 1 ) ( 7 2 + 7 + 1 ) ( 11 2 + 11 + 1 ) ( 13 2 + 13 + 1 ) ( 22021 + 1 ) = ( 13 ) ( 3 19 ) ( 7 19 ) ( 3 61 ) ( 22 1001 ) = 3 2 7 13 19 2 61 ( 22 7 11 13 ) = 2 ( 3 2 7 2 11 2 13 2 ) ( 19 2 61 ) = 2 ( 3 2 7 2 11 2 13 2 ) 22021 = 2 D , {\displaystyle {\begin{aligned}\sigma (D)&=(3^{2}+3+1)\cdot (7^{2}+7+1)\cdot (11^{2}+11+1)\cdot (13^{2}+13+1)\cdot (22021+1)=(13)\cdot (3\cdot 19)\cdot (7\cdot 19)\cdot (3\cdot 61)\cdot (22\cdot 1001)\\&=3^{2}\cdot 7\cdot 13\cdot 19^{2}\cdot 61\cdot (22\cdot 7\cdot 11\cdot 13)=2\cdot (3^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2})\cdot (19^{2}\cdot 61)=2\cdot (3^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2})\cdot 22021=2D,\end{aligned}}}

where we turn a blind eye to the fact that 19⋅61 = 22021 reveals that 22021 is composite!

A Descartes number is defined as an odd number n = mp where m and p are coprime and 2n = σ(m)⋅(p + 1) , whence p is taken as a 'spoof' prime. The example given is the only one currently known.

If m is an odd almost perfect number, that is, σ(m) = 2m − 1 and 2m − 1 is taken as a 'spoof' prime, then n = m⋅(2m − 1) is a Descartes number, since σ(n) = σ(m⋅(2m − 1)) = σ(m)⋅2m = (2m − 1)⋅2m = 2n . If 2m − 1 were prime, n would be an odd perfect number!

Notes

  1. Currently, the only known almost perfect numbers are the nonnegative powers of 2, whence the only known odd almost perfect number is 2 = 1.

References

Classes of natural numbers
Powers and related numbers
Of the form a × 2 ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
Figurate numbers
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Primes
Pseudoprimes
Arithmetic functions and dynamics
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Other prime factor or divisor related numbers
Numeral system-dependent numbers
Arithmetic functions
and dynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Binary numbers
Generated via a sieve
Sorting related
Natural language related
Graphemics related


Stub icon

This number theory-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: