Misplaced Pages

Moxonidine

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Citation bot (talk | contribs) at 02:29, 10 December 2024 (Altered pages. Formatted dashes. | Use this bot. Report bugs. | Suggested by Dominic3203 | Linked from User:Marbletan/sandbox | #UCB_webform_linked 991/2664). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 02:29, 10 December 2024 by Citation bot (talk | contribs) (Altered pages. Formatted dashes. | Use this bot. Report bugs. | Suggested by Dominic3203 | Linked from User:Marbletan/sandbox | #UCB_webform_linked 991/2664)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) Antihypertensive medication Pharmaceutical compound
Moxonidine
Clinical data
Pronunciation/mɒkˈsɒnɪdiːn/
Trade namesPhysiotens, Moxon
AHFS/Drugs.comInternational Drug Names
Pregnancy
category
  • AU: B3
Routes of
administration
Oral (tablets)
ATC code
Legal status
Legal status
  • UK: POM (Prescription only)
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Bioavailability88% (Tmax = 1 hour)
Protein binding7.2–10%
MetabolismLiver (10–20%)
MetabolitesDehydrogenated moxonidine (major), hydroxymethyl-moxonidine, hydroxy-moxonidine, dihydroxy-moxonidine
Elimination half-life~2.2–2.8 hours
ExcretionRenal (90%), feces (~1%)
Identifiers
IUPAC name
  • 4-Chloro-N-(4,5-dihydro-1H-imidazol-2-yl)-
    6-methoxy-2-methylpyrimidin-5-amine
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.158.061 Edit this at Wikidata
Chemical and physical data
FormulaC9H12ClN5O
Molar mass241.68 g·mol
3D model (JSmol)
SMILES
  • Clc1nc(C)nc(OC)c1NC2=NCCN2
InChI
  • InChI=1S/C9H12ClN5O/c1-5-13-7(10)6(8(14-5)16-2)15-9-11-3-4-12-9/h3-4H2,1-2H3,(H2,11,12,15)
  • Key:WPNJAUFVNXKLIM-UHFFFAOYSA-N
  (what is this?)  (verify)

Moxonidine (INN) is a new-generation alpha-2/imidazoline receptor agonist antihypertensive drug licensed for the treatment of mild to moderate essential hypertension. It may have a role when thiazides, beta-blockers, ACE inhibitors, and calcium channel blockers are not appropriate or have failed to control blood pressure. In addition, it demonstrates favourable effects on parameters of the insulin resistance syndrome, apparently independent of blood pressure reduction. It is also a growth hormone releaser. It is manufactured by Solvay Pharmaceuticals (acquired by Abbott in 2009) under the brand name Physiotens and Moxon.

Mechanism of action

Moxonidine is a selective agonist at the imidazoline receptor subtype 1 (I1). This receptor subtype is found in both the rostral ventro-lateral pressor and ventromedial depressor areas of the medulla oblongata. Moxonidine therefore causes a decrease in sympathetic nervous system activity and, therefore, a decrease in blood pressure.

Compared to the older central-acting antihypertensives, moxonidine binds with much greater affinity to the imidazoline I1-receptor than to the α2-receptor. In contrast, clonidine binds to both receptors with near equal affinity. Moxonidine has an affinity for I1 that is 33 times greater than α2, compared to clonidine which is only four times greater.

In addition, moxonidine may also promote sodium excretion, improve insulin resistance and glucose tolerance and protect against hypertensive target organ damage, such as kidney disease and cardiac hypertrophy.

Pharmacodynamic properties

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2016) (Learn how and when to remove this message)

Effects on insulin resistance

In all animal models of insulin resistance, moxonidine had striking effects on the development of insulin resistance, hyperinsulinaemia and impaired glucose homeostasis. Given the importance of insulin resistance as a risk factor for cardiovascular disease, it is of considerable relevance that it has been shown to improve insulin sensitivity.

Contraindications

It is contraindicated if there has been a past history of angioedema; heart conduction disorders (e.g. sick sinus syndrome, second- or third-degree heart block); bradycardia; severe heart failure or coronary artery disease. Also: Raynaud's syndrome, intermittent claudication, epilepsy, depression, Parkinson's disease, glaucoma. Use in pregnancy is discouraged. Moxonidine passes into breast milk.

Moxonidine should be avoided in patients with moderate to severe renal impairment. Abrupt discontinuation of the drug should also be avoided. If concomitant treatment with a beta blocker has to be stopped, the beta blocker should be discontinued first, then moxonidine after a few days. Alcohol may potentiate the hypotensive effects of Moxonidine.

Excess mortality has been seen in patients with symptomatic heart failure in the MOXCON study. However, the MOXCON trial utilised a very high dose of 3.0 mg daily which is well above the normal dose of 0.2–0.6 mg daily.

Adverse effects

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2016) (Learn how and when to remove this message)

Noteworthy side effects include dry mouth, headache, fatigue, dizziness, intermittent facial oedema, nausea, sleep disturbances (rarely sedation), asthenia, vasodilatation, and rarely, skin reactions.

Safety

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2016) (Learn how and when to remove this message)

Routine toxicology studies have provided no evidence that moxonidine has any teratogenic, mutagenic or carcinogenic potential. No evidence has been found of serious adverse effects on organs or organ systems, and the drug has not been shown to have deleterious effects on perinatal or postnatal growth and development.

Drug interactions

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2016) (Learn how and when to remove this message)

Concomitant administration of moxonidine and a thiazide diuretic such as hydrochlorothiazide gave a synergistic antihypertensive effect.

See also

References

  1. Weimann HJ, Rudolph M (1992). "Clinical Pharmacokinetics of Moxonidine". Journal of Cardiovascular Pharmacology. 20 (Suppl. 4): S37 – S41. doi:10.1097/00005344-199220004-00008.
  2. ^ "Physiotens Tablets (moxonidine) Product Information" (PDF). Abbott Australasia Pty Ltd, 32-34 Lord Street, Botany NSW 2019, Australia. Retrieved 1 September 2016.
  3. He MM, Abraham TL, Lindsay TJ, Schaefer HC, Pouliquen IJ, Payne C, et al. (March 2003). "Metabolism and disposition of the antihypertensive agent moxonidine in humans". Drug Metabolism and Disposition. 31 (3): 334–342. doi:10.1124/dmd.31.3.334. PMID 12584161.
  4. Farsang, C (2001). "Moxonidine: Clinical Profile" (PDF). Journal of Clinical and Basic Cardiology. An Independent International Scientific Journal. 4 (3): 197–299. Retrieved 1 September 2016.
  5. ^ Fenton C, Keating GM, Lyseng-Williamson KA (2006). "Moxonidine: a review of its use in essential hypertension". Drugs. 66 (4): 477–496. doi:10.2165/00003495-200666040-00006. PMID 16597164. S2CID 195691757.
  6. Fairbanks CA, Wilcox GL (July 1999). "Moxonidine, a selective alpha2-adrenergic and imidazoline receptor agonist, produces spinal antinociception in mice". The Journal of Pharmacology and Experimental Therapeutics. 290 (1): 403–412. PMID 10381806.
  7. Bamberger CM, Mönig H, Mill G, Gödde E, Schulte HM (1995). "Growth hormone secretion in response to the new centrally acting antihypertensive agent moxonidine in normal human subjects: comparison to clonidine and GHRH". Experimental and Clinical Endocrinology & Diabetes. 103 (3): 205–208. doi:10.1055/s-0029-1211351. PMID 7584524.
  8. Prichard BN, Owens CW, Graham BR (August 1997). "Pharmacology and clinical use of moxonidine, a new centrally acting sympatholytic antihypertensive agent". Journal of Human Hypertension. 11 (Suppl 1): S29 – S45. PMID 9321737.
  9. Cohn JN, Pfeffer MA, Rouleau J, Sharpe N, Swedberg K, Straub M, et al. (October 2003). "Adverse mortality effect of central sympathetic inhibition with sustained-release moxonidine in patients with heart failure (MOXCON)". European Journal of Heart Failure. 5 (5): 659–667. doi:10.1016/S1388-9842(03)00163-6. PMID 14607206. S2CID 45883678.
  10. Frei M, Küster L, Gardosch von Krosigk PP, Koch HF, Küppers H (1994). "Moxonidine and hydrochlorothiazide in combination: a synergistic antihypertensive effect". Journal of Cardiovascular Pharmacology. 24 (Suppl 1): S25 – S28. doi:10.1097/00005344-199424001-00005. PMID 7533223.

External links

Sympatholytic (and closely related) antihypertensives (C02)
Sympatholytics
(antagonize α-adrenergic
vasoconstriction)
Central
α2-Adrenergic receptor agonists
Adrenergic release inhibitors
Imidazoline receptor agonists
Ganglion-blocking/nicotinic antagonists
Peripheral
Indirect
Monoamine oxidase inhibitors
VMAT inhibitors
Tyrosine hydroxylase inhibitors
Direct
α1-Adrenergic receptor blockers
Non-selective α-adrenergic receptor blockers
Other antagonists
Serotonin receptor antagonists
Endothelin receptor antagonists (for PHTooltip Pulmonary hypertension)
Adrenergic receptor modulators
α1
Agonists
Antagonists
α2
Agonists
Antagonists
β
Agonists
Antagonists
Imidazoline receptor modulators
IRTooltip Imidazoline receptor
See also: Receptor/signaling modulators
Categories: