Misplaced Pages

Bretylium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Chemical compound Pharmaceutical compound
Bretylium
Clinical data
MedlinePlusa682861
Pregnancy
category
  • AU: C
Routes of
administration
IV, IM
ATC code
Legal status
Legal status
Pharmacokinetic data
BioavailabilityNA
Protein bindingNA
MetabolismNone
Elimination half-life7-8 hours
ExcretionRenal
Identifiers
IUPAC name
  • N-(2-bromobenzyl)-N,N-dimethylethanaminium
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC11H17BrN
Molar mass243.168 g·mol
3D model (JSmol)
SMILES
  • Brc1ccccc1C(CC)(C)C
InChI
  • InChI=1S/C11H17BrN/c1-4-13(2,3)9-10-7-5-6-8-11(10)12/h5-8H,4,9H2,1-3H3/q+1
  • Key:AAQOQKQBGPPFNS-UHFFFAOYSA-N
  (what is this?)  (verify)

Bretylium (also bretylium tosylate) is an antiarrhythmic agent. It blocks the release of noradrenaline from nerve terminals. In effect, it decreases output from the peripheral sympathetic nervous system. It also acts by blocking K channels and is considered a class III antiarrhythmic. The dose is 5–10 mg/kg and side effects are high blood pressure followed by low blood pressure and ventricular ectopy.

Originally introduced in 1959 for the treatment of hypertension. Its use as an antiarrhythmic for ventricular fibrillation was discovered and patented by Marvin Bacaner in 1969 at the University of Minnesota.

The American Heart Association removed bretylium from their 2000 ECC/ACC guidelines due to its unproven efficacy and ongoing supply problems. Many have cited these supply problems as an issue of raw materials needed in the production of Bretylium. By the release of the AHA 2005 ECC/ACC guidelines there is no mention of Bretylium and it is virtually unavailable throughout most of the world.

On June 8, 2011 bretylium tosylate was announced as unavailable in the US after request of Hospira Inc. to withdraw its NDA from the market. Bretylium will remain on the FDA's discontinued drug list since its withdrawal was not the result of a safety or effectiveness concern. In mid 2019, it was reintroduced.

Uses

The drug was used in emergency medicine, cardiology, and other specialties throughout the 1980s-1990s for the acute management of ventricular tachycardia and ventricular fibrillation refractory to other first line treatments such as defibrillation or lidocaine.

It is contraindicated in patients with AV (atrioventricular) heart block or digoxin toxicity.

Bretylium should be used only in an ICU or emergency department setting and should not be used elsewhere due to its dramatic actions and its predominant side effect of hypotension.

Experimental uses

It is used in physiological and pharmacological research as an inhibitor of sympathetic transmission. Its mechanism of action is the inhibition of neurotransmitter release from sympathetic nerve terminals, both by the inhibition of action potentials in the nerve terminals and by other mechanisms. Its specificity for sympathetic nerves is achieved because it is a substrate for the noradrenaline transporter; hence, it accumulates inside nerve terminals which have this transporter.

References

  1. Tiku PE, Nowell PT (December 1991). "Selective inhibition of K-stimulation of Na,K-ATPase by bretylium". British Journal of Pharmacology. 104 (4): 895–900. doi:10.1111/j.1476-5381.1991.tb12523.x. PMC 1908819. PMID 1667290.
  2. Harington M (April 1962). "The drug treatment of hypertension. The results of drug treatment". Proceedings of the Royal Society of Medicine. 55 (4): 283–6. PMC 1896727. PMID 13904707.
  3. US 3441649, Marvin B Bacaner, "Suppression of cardiac ventricular fibrillation and cardiac arrhythmias with bretylium tosylate", assigned to University of Minnesota 
  4. Khan, M. Gabriel (December 14, 2005). Encyclopedia of Heart Diseases. Academic Press. p. 221. ISBN 978-0-12-406061-6. Retrieved 2015-07-01.
  5. Hypothermia~treatment at eMedicine
  6. "Determination that Bretylium Tosylate Injection, 50 Milligrams/Milliliter, Was Not Withdrawn From Sale for Reasons of Safety or Effectiveness". Food and Drug Administration. December 19, 2011. pp. 78669–70. Retrieved February 22, 2018 – via federalregister.gov. 76 FR 78669
  7. "ACS". kumc.edu. Kansas University Medical Center. Archived from the original on September 4, 2006. Retrieved 2008-09-23.
  8. Brain KL, Cunnane TC (February 2008). "Bretylium abolishes neurotransmitter release without necessarily abolishing the nerve terminal action potential in sympathetic terminals". British Journal of Pharmacology. 153 (4): 831–9. doi:10.1038/sj.bjp.0707623. PMC 2259200. PMID 18071295.
  9. Boura AL, Copp FC, Duncombe WG, Green AF, McCoubrey A (June 1960). "The selective accumulation of bretylium in sympathetic ganglia and their postganglionic nerves". British Journal of Pharmacology and Chemotherapy. 15 (2): 265–70. doi:10.1111/j.1476-5381.1960.tb01242.x. PMC 1481934. PMID 13803289.
Antiarrhythmic agents (C01B)
Channel blockers
class I
(Na channel blockers)
class Ia (Phase 0→ and Phase 3→)
class Ib (Phase 3←)
class Ic (Phase 0→)
class III
(Phase 3→, K channel blockers)
class IV
(Phase 4→, Ca channel blockers)
Receptor agonists
and antagonists
class II
(Phase 4→, β blockers)
A1 agonist
M2
α receptors
Ion transporters
Na/ K-ATPase
Ion channel modulators
Calcium
VDCCsTooltip Voltage-dependent calcium channels
Blockers
Activators
Potassium
VGKCsTooltip Voltage-gated potassium channels
Blockers
Activators
IRKsTooltip Inwardly rectifying potassium channel
Blockers
Activators
KCaTooltip Calcium-activated potassium channel
Blockers
Activators
K2PsTooltip Tandem pore domain potassium channel
Blockers
Activators
Sodium
VGSCsTooltip Voltage-gated sodium channels
Blockers
Activators
ENaCTooltip Epithelial sodium channel
Blockers
Activators
ASICsTooltip Acid-sensing ion channel
Blockers
Chloride
CaCCsTooltip Calcium-activated chloride channel
Blockers
Activators
CFTRTooltip Cystic fibrosis transmembrane conductance regulator
Blockers
Activators
Unsorted
Blockers
Others
TRPsTooltip Transient receptor potential channels
LGICsTooltip Ligand gated ion channels
See also: Receptor/signaling modulatorsTransient receptor potential channel modulators
Categories: