This is the current revision of this page, as edited by DaveRusin2 (talk | contribs ) at 04:57, 26 September 2024 (→Reduction to an integral of a rational function : Might as well advertise the universality of the half-tangent technique). The present address (URL) is a permanent link to this version.
Revision as of 04:57, 26 September 2024 by DaveRusin2 (talk | contribs ) (→Reduction to an integral of a rational function : Might as well advertise the universality of the half-tangent technique)(diff ) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Commonly encountered and tricky integral
The integral of secant cubed is a frequent and challenging indefinite integral of elementary calculus :
∫
sec
3
x
d
x
=
1
2
sec
x
tan
x
+
1
2
∫
sec
x
d
x
+
C
=
1
2
(
sec
x
tan
x
+
ln
|
sec
x
+
tan
x
|
)
+
C
=
1
2
(
sec
x
tan
x
+
gd
−
1
x
)
+
C
,
|
x
|
<
1
2
π
{\textstyle {\begin{aligned}\int \sec ^{3}x\,dx&={\tfrac {1}{2}}\sec x\tan x+{\tfrac {1}{2}}\int \sec x\,dx+C\\&={\tfrac {1}{2}}(\sec x\tan x+\ln \left|\sec x+\tan x\right|)+C\\&={\tfrac {1}{2}}(\sec x\tan x+\operatorname {gd} ^{-1}x)+C,\qquad |x|<{\tfrac {1}{2}}\pi \end{aligned}}}
where
gd
−
1
{\textstyle \operatorname {gd} ^{-1}}
is the inverse Gudermannian function , the integral of the secant function .
There are a number of reasons why this particular antiderivative is worthy of special attention:
The technique used for reducing integrals of higher odd powers of secant to lower ones is fully present in this, the simplest case. The other cases are done in the same way.
The utility of hyperbolic functions in integration can be demonstrated in cases of odd powers of secant (powers of tangent can also be included).
This is one of several integrals usually done in a first-year calculus course in which the most natural way to proceed involves integrating by parts and returning to the same integral one started with (another is the integral of the product of an exponential function with a sine or cosine function; yet another the integral of a power of the sine or cosine function).
This integral is used in evaluating any integral of the form
∫
a
2
+
x
2
d
x
,
{\displaystyle \int {\sqrt {a^{2}+x^{2}}}\,dx,}
where
a
{\displaystyle a}
is a constant. In particular, it appears in the problems of:
Derivations
Integration by parts
This antiderivative may be found by integration by parts , as follows:
∫
sec
3
x
d
x
=
∫
u
d
v
=
u
v
−
∫
v
d
u
{\displaystyle \int \sec ^{3}x\,dx=\int u\,dv=uv-\int v\,du}
where
u
=
sec
x
,
d
v
=
sec
2
x
d
x
,
v
=
tan
x
,
d
u
=
sec
x
tan
x
d
x
.
{\displaystyle u=\sec x,\quad dv=\sec ^{2}x\,dx,\quad v=\tan x,\quad du=\sec x\tan x\,dx.}
Then
∫
sec
3
x
d
x
=
∫
(
sec
x
)
(
sec
2
x
)
d
x
=
sec
x
tan
x
−
∫
tan
x
(
sec
x
tan
x
)
d
x
=
sec
x
tan
x
−
∫
sec
x
tan
2
x
d
x
=
sec
x
tan
x
−
∫
sec
x
(
sec
2
x
−
1
)
d
x
=
sec
x
tan
x
−
(
∫
sec
3
x
d
x
−
∫
sec
x
d
x
)
=
sec
x
tan
x
−
∫
sec
3
x
d
x
+
∫
sec
x
d
x
.
{\displaystyle {\begin{aligned}\int \sec ^{3}x\,dx&=\int (\sec x)(\sec ^{2}x)\,dx\\&=\sec x\tan x-\int \tan x\,(\sec x\tan x)\,dx\\&=\sec x\tan x-\int \sec x\tan ^{2}x\,dx\\&=\sec x\tan x-\int \sec x\,(\sec ^{2}x-1)\,dx\\&=\sec x\tan x-\left(\int \sec ^{3}x\,dx-\int \sec x\,dx\right)\\&=\sec x\tan x-\int \sec ^{3}x\,dx+\int \sec x\,dx.\end{aligned}}}
Next add
∫
sec
3
x
d
x
{\textstyle \int \sec ^{3}x\,dx}
to both sides:
2
∫
sec
3
x
d
x
=
sec
x
tan
x
+
∫
sec
x
d
x
=
sec
x
tan
x
+
ln
|
sec
x
+
tan
x
|
+
C
,
{\displaystyle {\begin{aligned}2\int \sec ^{3}x\,dx&=\sec x\tan x+\int \sec x\,dx\\&=\sec x\tan x+\ln \left|\sec x+\tan x\right|+C,\end{aligned}}}
using the integral of the secant function ,
∫
sec
x
d
x
=
ln
|
sec
x
+
tan
x
|
+
C
.
{\textstyle \int \sec x\,dx=\ln \left|\sec x+\tan x\right|+C.}
Finally, divide both sides by 2:
∫
sec
3
x
d
x
=
1
2
(
sec
x
tan
x
+
ln
|
sec
x
+
tan
x
|
)
+
C
,
{\displaystyle \int \sec ^{3}x\,dx={\tfrac {1}{2}}(\sec x\tan x+\ln \left|\sec x+\tan x\right|)+C,}
which was to be derived. A possible mnemonic is: "The integral of secant cubed is the average of the derivative and integral of secant".
Reduction to an integral of a rational function
∫
sec
3
x
d
x
=
∫
d
x
cos
3
x
=
∫
cos
x
d
x
cos
4
x
=
∫
cos
x
d
x
(
1
−
sin
2
x
)
2
=
∫
d
u
(
1
−
u
2
)
2
{\displaystyle \int \sec ^{3}x\,dx=\int {\frac {dx}{\cos ^{3}x}}=\int {\frac {\cos x\,dx}{\cos ^{4}x}}=\int {\frac {\cos x\,dx}{(1-\sin ^{2}x)^{2}}}=\int {\frac {du}{(1-u^{2})^{2}}}}
where
u
=
sin
x
{\displaystyle u=\sin x}
, so that
d
u
=
cos
x
d
x
{\displaystyle du=\cos x\,dx}
. This admits a decomposition by partial fractions :
1
(
1
−
u
2
)
2
=
1
(
1
+
u
)
2
(
1
−
u
)
2
=
1
4
(
1
+
u
)
+
1
4
(
1
+
u
)
2
+
1
4
(
1
−
u
)
+
1
4
(
1
−
u
)
2
.
{\displaystyle {\frac {1}{(1-u^{2})^{2}}}={\frac {1}{(1+u)^{2}(1-u)^{2}}}={\frac {1}{4(1+u)}}+{\frac {1}{4(1+u)^{2}}}+{\frac {1}{4(1-u)}}+{\frac {1}{4(1-u)^{2}}}.}
Antidifferentiating term-by-term, one gets
∫
sec
3
x
d
x
=
1
4
ln
|
1
+
u
|
−
1
4
(
1
+
u
)
−
1
4
ln
|
1
−
u
|
+
1
4
(
1
−
u
)
+
C
=
1
4
ln
|
1
+
u
1
−
u
|
+
u
2
(
1
−
u
2
)
+
C
=
1
4
ln
|
1
+
sin
x
1
−
sin
x
|
+
sin
x
2
cos
2
x
+
C
=
1
4
ln
|
1
+
sin
x
1
−
sin
x
|
+
1
2
sec
x
tan
x
+
C
=
1
4
ln
|
(
1
+
sin
x
)
2
1
−
sin
2
x
|
+
1
2
sec
x
tan
x
+
C
=
1
4
ln
|
(
1
+
sin
x
)
2
cos
2
x
|
+
1
2
sec
x
tan
x
+
C
=
1
2
ln
|
1
+
sin
x
cos
x
|
+
1
2
sec
x
tan
x
+
C
=
1
2
(
ln
|
sec
x
+
tan
x
|
+
sec
x
tan
x
)
+
C
.
{\displaystyle {\begin{aligned}\int \sec ^{3}x\,dx&={\tfrac {1}{4}}\ln |1+u|-{\frac {1}{4(1+u)}}-{\tfrac {1}{4}}\ln |1-u|+{\frac {1}{4(1-u)}}+C\\&={\tfrac {1}{4}}\ln {\Biggl |}{\frac {1+u}{1-u}}{\Biggl |}+{\frac {u}{2(1-u^{2})}}+C\\&={\tfrac {1}{4}}\ln {\Biggl |}{\frac {1+\sin x}{1-\sin x}}{\Biggl |}+{\frac {\sin x}{2\cos ^{2}x}}+C\\&={\tfrac {1}{4}}\ln \left|{\frac {1+\sin x}{1-\sin x}}\right|+{\tfrac {1}{2}}\sec x\tan x+C\\&={\tfrac {1}{4}}\ln \left|{\frac {(1+\sin x)^{2}}{1-\sin ^{2}x}}\right|+{\tfrac {1}{2}}\sec x\tan x+C\\&={\tfrac {1}{4}}\ln \left|{\frac {(1+\sin x)^{2}}{\cos ^{2}x}}\right|+{\tfrac {1}{2}}\sec x\tan x+C\\&={\tfrac {1}{2}}\ln \left|{\frac {1+\sin x}{\cos x}}\right|+{\tfrac {1}{2}}\sec x\tan x+C\\&={\tfrac {1}{2}}(\ln |\sec x+\tan x|+\sec x\tan x)+C.\end{aligned}}}
Alternatively, one may use the tangent half-angle substitution for any rational function of trigonometric functions; for this particular integrand, that method leads to the integration of
2
(
1
+
u
2
)
2
(
1
−
u
2
)
3
=
1
2
(
1
+
u
)
−
1
2
(
1
+
u
)
2
+
1
(
1
+
u
)
3
+
1
2
(
1
−
u
)
−
1
2
(
1
−
u
)
2
+
1
(
1
−
u
)
3
.
{\displaystyle {\frac {2(1+u^{2})^{2}}{(1-u^{2})^{3}}}={\frac {1}{2(1+u)}}-{\frac {1}{2(1+u)^{2}}}+{\frac {1}{(1+u)^{3}}}+{\frac {1}{2(1-u)}}-{\frac {1}{2(1-u)^{2}}}+{\frac {1}{(1-u)^{3}}}.}
Hyperbolic functions
Integrals of the form:
∫
sec
n
x
tan
m
x
d
x
{\displaystyle \int \sec ^{n}x\tan ^{m}x\,dx}
can be reduced using the Pythagorean identity if
n
{\displaystyle n}
is even or
n
{\displaystyle n}
and
m
{\displaystyle m}
are both odd. If
n
{\displaystyle n}
is odd and
m
{\displaystyle m}
is even, hyperbolic substitutions can be used to replace the nested integration by parts with hyperbolic power-reducing formulas.
sec
x
=
cosh
u
tan
x
=
sinh
u
sec
2
x
d
x
=
cosh
u
d
u
or
sec
x
tan
x
d
x
=
sinh
u
d
u
sec
x
d
x
=
d
u
or
d
x
=
sech
u
d
u
u
=
arcosh
(
sec
x
)
=
arsinh
(
tan
x
)
=
ln
|
sec
x
+
tan
x
|
{\displaystyle {\begin{aligned}\sec x&=\cosh u\\\tan x&=\sinh u\\\sec ^{2}x\,dx&=\cosh u\,du{\text{ or }}\sec x\tan x\,dx=\sinh u\,du\\\sec x\,dx&=\,du{\text{ or }}dx=\operatorname {sech} u\,du\\u&=\operatorname {arcosh} (\sec x)=\operatorname {arsinh} (\tan x)=\ln |\sec x+\tan x|\end{aligned}}}
Note that
∫
sec
x
d
x
=
ln
|
sec
x
+
tan
x
|
{\displaystyle \int \sec x\,dx=\ln |\sec x+\tan x|}
follows directly from this substitution.
∫
sec
3
x
d
x
=
∫
cosh
2
u
d
u
=
1
2
∫
(
cosh
2
u
+
1
)
d
u
=
1
2
(
1
2
sinh
2
u
+
u
)
+
C
=
1
2
(
sinh
u
cosh
u
+
u
)
+
C
=
1
2
(
sec
x
tan
x
+
ln
|
sec
x
+
tan
x
|
)
+
C
{\displaystyle {\begin{aligned}\int \sec ^{3}x\,dx&=\int \cosh ^{2}u\,du\\&={\tfrac {1}{2}}\int (\cosh 2u+1)\,du\\&={\tfrac {1}{2}}\left({\tfrac {1}{2}}\sinh 2u+u\right)+C\\&={\tfrac {1}{2}}(\sinh u\cosh u+u)+C\\&={\tfrac {1}{2}}(\sec x\tan x+\ln \left|\sec x+\tan x\right|)+C\end{aligned}}}
Higher odd powers of secant
Just as the integration by parts above reduced the integral of secant cubed to the integral of secant to the first power, so a similar process reduces the integral of higher odd powers of secant to lower ones. This is the secant reduction formula, which follows the syntax:
∫
sec
n
x
d
x
=
sec
n
−
2
x
tan
x
n
−
1
+
n
−
2
n
−
1
∫
sec
n
−
2
x
d
x
(for
n
≠
1
)
{\displaystyle \int \sec ^{n}x\,dx={\frac {\sec ^{n-2}x\tan x}{n-1}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}x\,dx\qquad {\text{ (for }}n\neq 1{\text{)}}\,\!}
Even powers of tangents can be accommodated by using binomial expansion to form an odd polynomial of secant and using these formulae on the largest term and combining like terms.
See also
Notes
The constants of integration are absorbed in the remaining integral term.
References
Spivak, Michael (2008). "Integration in Elementary Terms". Calculus . p. 382 . This is a tricky and important integral that often comes up.
^ Stewart, James (2012). "Section 7.2: Trigonometric Integrals". Calculus - Early Transcendentals . United States: Cengage Learning. pp. 475–6. ISBN 978-0-538-49790-9 .
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑