Misplaced Pages

3,14-Diacetyloxymorphone

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from 3,14-diacetyloxymorphone)
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "3,14-Diacetyloxymorphone" – news · newspapers · books · scholar · JSTOR (January 2016) (Learn how and when to remove this message)
This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (January 2016) (Learn how and when to remove this message)
(Learn how and when to remove this message)
3,14-Diacetyloxymorphone
Names
IUPAC name 17-Methyl-6-oxo-4,5α-epoxymorphinan-3,14-diyl diacetate
Systematic IUPAC name (4R,4aS,7aR,12bS)-3-Methyl-7-oxo-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuroisoquinoline-4a,9-diyl diacetate
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.059.063 Edit this at Wikidata
EC Number
  • 264-989-2
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C21H23NO6/c1-11(23)26-15-5-4-13-10-16-21(28-12(2)24)7-6-14(25)19-20(21,8-9-22(16)3)17(13)18(15)27-19/h4-5,16,19H,6-10H2,1-3H3/t16-,19+,20+,21-/m1/s1Key: OPPSZLCGCWIRIA-MBPVOVBZSA-N
  • InChI=1/C21H23NO6/c1-11(23)26-15-5-4-13-10-16-21(28-12(2)24)7-6-14(25)19-20(21,8-9-22(16)3)17(13)18(15)27-19/h4-5,16,19H,6-10H2,1-3H3/t16-,19+,20+,21-/m1/s1Key: OPPSZLCGCWIRIA-MBPVOVBZBD
SMILES
  • CN1(C2)3(OC(C)=O)4(CC1)C5=C2C=CC(OC(C)=O)=C5O4()C(CC3)=O
Properties
Chemical formula C21H23NO6
Molar mass 385.416 g·mol
Hazards
GHS labelling:
Pictograms GHS06: Toxic
Signal word Danger
Hazard statements H300, H310
Precautionary statements P260, P262, P264, P270, P271, P280, P284, P301+P310, P302+P350, P304+P340, P310, P320, P321, P322, P330, P361, P363, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

3,14-Diacetyloxymorphone is an opioid analgesic which has never been marketed. It is an acetyl derivative of oxymorphone. It is related to other acetylated morphone derivatives, including 3,6-diacetyloxymorphone, 3,8,14-triacetyloxymorphone, 3,6,8,14-tetraacetyloxymorphone, noroxymorphone analogs of all or most of the above, and 3,6,14-triacetyloxymorphone, a derivative of oxymorphone whose structure-activity relationship suggests is 800% the potency of the parent drug versus 250% for 3,14-diacetyoxymorphone. Both were developed in Austria in the 1920s along with other derivatives of the strong dihydromorphinones and these drugs are generated by reacting oxymorphone with either acetic anhydride or acetyl chloride at various temperatures in the 80-160 °C for several hours; 3,6,14-triacetyloxymorphone may be more easily made when a catalyst is used but elevated pressure or reaction in vacuo or under a nitrogen or noble gas atmosphere is not required.

As an ester of oxymorphone, it is presumably a Schedule II controlled substance as it and its relatives save acetylmorphone do not specifically appear in Schedule I. 3,14-Diacetyloxymorphone and its relatives including acetylmorphone do not, however, have annual production quotas published by the DEA in the Federal Register.

Like all or most of the direct morphine derivatives, halogenated derivatives of these drugs and their hydromorphone and hydromorphinol analogues were synthesized in the 1930s when both the esters and the halogenated morphine derivatives were being developed, including one given as 1,2-iodo-3,6,14-triacetyl-6ɑ-14β-hydroxydihydromorphinone in a footnote to a 1948 German medical journal article about the esters of morphine. It appears that this drug was used, labelled with Iodine 129, as a tracer in animal studies, was significantly stronger than morphine, and possibly has 1- and/or 2- fluoro, chloro, and bromo analogues.

3,6-Diacetyloxymorphone is a third acetylated oxymorphone derivative, the oxymorphone analogue of acetylmorphone and expected to be intermediate in strength betwixt the two aforementioned drugs. Another is 3-acetyloxymorphone. All of the above have been, owing to their somewhat sophisticated yet straightforward synthesis from pharmaceutical opioids, consistently if in vanishingly small quantities since at least the 1960s by law enforcement around the world as the results of clandestine synthesis, and acetylmorphone itself was banned by the League of Nations in 1930 to prevent its use as a legal heroin substitute. Therefore, all or most of this group and its hydromorphone analogues along with some others more closely related to heroin such as acetylpropionylmorphine were the first designer drugs in the 1920s.

References

  1. WO2017207519 Process for obtaining 3,14-diacetyloxymorphone from oripavine
  2. UNODC Bulletin On Narcotics, 1953-2
Opioid receptor modulators
μ-opioid
(MOR)
Agonists
(abridged;
full list)
Antagonists
δ-opioid
(DOR)
Agonists
Antagonists
κ-opioid
(KOR)
Agonists
Antagonists
Nociceptin
(NOP)
Agonists
Antagonists
Others
  • Others: Kyotorphin (met-enkephalin releaser/degradation stabilizer)
Categories: