Misplaced Pages

3-Nitropropionic acid

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
β-Nitropropionic acid
Names
Preferred IUPAC name 3-Nitropropanoic acid
Other names 3-NPA
β-Nitropropionic acid
Hiptagenic acid
Bovinocidin
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.276 Edit this at Wikidata
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C3H5NO4/c5-3(6)1-2-4(7)8/h1-2H2,(H,5,6)Key: WBLZUCOIBUDNBV-UHFFFAOYSA-N
SMILES
  • C(C(=O))C(=O)O
Properties
Chemical formula C3H5NO4
Molar mass 119.076 g·mol
Melting point 65–67 °C (149–153 °F; 338–340 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

3-Nitropropionic acid (3-NPA) is a mycotoxin, a potent mitochondrial inhibitor, which is toxic to humans. It is produced by a number of fungi, and may be found widely in food such as in sugar cane as well as Japanese fungally fermented staples, including miso, soy sauce, katsuobushi, coconuts and some traditional Chinese medicines.

It can be caused by extreme weather, stressed crop growth conditions, as well as storage conditions (like moisture), which can give a further rise under global warming conditions. Fungi of the genus Arthrinium are known to produce 3-nitropropanoic acid.

It is found that 3-nitropropionic acid is a mitochondrial toxin and produces striatal alterations in rats similar to those observed in the brain of Huntington's disease patients, and administration of the cannabinoid receptor agonist WIN55212-2 to rats for six consecutive days, before the 3-NPA injection, exerted preventive effects on all alterations elicited by the toxin, like mitochondrial dysfunction and lipid peroxidation, by activation of the CB1 receptor.

References

  1. Roberts, Toby John (2004). "3-Nitropropionic Acid Model of Metabolic Stress: Assessment by Magnetic Resonance Imaging". Stroke Genomics. 104: 203–220. doi:10.1385/1-59259-836-6:203. ISBN 1-59259-836-6. PMID 15454669.
  2. Hocking, Ailsa D.; Pitt, John I.; Samson, Robert A.; Thrane, Ulf (29 August 2006). Advances in Food Mycology. Springer. ISBN 9780387283913.
  3. Birkelund, T.; Johansen, R. F.; Illum, D. G.; Dyrskog, S. E.; Østergaard, J. A.; Falconer, T. M.; Andersen, C.; Fridholm, H.; Overballe-Petersen, S.; Jensen, J. S. (2021). "Fatal 3-Nitropropionic Acid Poisoning after Consuming Coconut Water". Emerging Infectious Diseases. 27 (1): 278–280. doi:10.3201/eid2701.202222. PMC 7774558. PMID 33350928.
  4. Wang, X.P.; Yang, R.M. (2003). "Movement Disorders Possibly Induced by Traditional Chinese Herbs". European Neurology. 50 (3): 153–159. doi:10.1159/000073056. PMID 14530621. S2CID 43878555.
  5. Jensen, Ole (Jun 13, 2016). "Management of mycotoxin risk in pig production" (PDF). Powerpoint by Ole Jensen.
  6. Norbäck, Dan; Hashim, Jamal Hisham; Cai, Gui-Hong; Hashim, Zailina; Ali, Faridah; Bloom, Erica; Larsson, Lennart (2016-02-01). "Rhinitis, Ocular, Throat and Dermal Symptoms, Headache and Tiredness among Students in Schools from Johor Bahru, Malaysia: Associations with Fungal DNA and Mycotoxins in Classroom Dust". PLOS ONE. 11 (2): e0147996. Bibcode:2016PLoSO..1147996N. doi:10.1371/journal.pone.0147996. ISSN 1932-6203. PMC 4734676. PMID 26829324.
  7. Wei, D. L.; Chang, S. C.; Lin, S. C.; Doong, M. L.; Jong, S. C. (1994). "Production of 3-nitropropionic acid by Arthrinium species". Current Microbiology (USA). 28: 1–5. doi:10.1007/BF01575978. ISSN 0343-8651. S2CID 41489212.
  8. Maya-López, Marisol; Colín-González, Ana Laura; Aguilera, Gabriela; de Lima, María Eduarda; Colpo-Ceolin, Ana; Rangel-López, Edgar; Villeda-Hernández, Juana; Rembao-Bojórquez, Daniel; Túnez, Isaac (2017-02-15). "Neuroprotective effect of WIN55,212-2 against 3-nitropropionic acid-induced toxicity in the rat brain: involvement of CB1 and NMDA receptors". American Journal of Translational Research. 9 (2): 261–274. ISSN 1943-8141. PMC 5340665. PMID 28337258.

Further reading

Bacterial
toxins
Exotoxin
Gram
positive
Bacilli
Clostridium:
Other:
Cocci
Staphylococcus
Actinomycetota
Gram
negative
Mechanisms
Endotoxin
Virulence
factor
Mycotoxins
Plant toxins
Invertebrate
toxins
Scorpion:
Spider:
Mollusca:
Vertebrate
toxins
Fish:
Amphibian:
Reptile/
Snake venom:
  • note: some toxins are produced by lower species and pass through intermediate species
Categories: