5-cubic honeycomb | |
---|---|
(no image) | |
Type | Regular 5-space honeycomb Uniform 5-honeycomb |
Family | Hypercube honeycomb |
Schläfli symbol | {4,3,4} t0,5{4,3,4} {4,3,3,3} {4,3,4}×{∞} {4,3,4}×{4,4} {4,3,4}×{∞} {4,4}×{∞} {∞} |
Coxeter-Dynkin diagrams |
|
5-face type | {4,3} (5-cube) |
4-face type | {4,3,3} (tesseract) |
Cell type | {4,3} (cube) |
Face type | {4} (square) |
Face figure | {4,3} (octahedron) |
Edge figure | 8 {4,3,3} (16-cell) |
Vertex figure | 32 {4,3} (5-orthoplex) |
Coxeter group | |
Dual | self-dual |
Properties | vertex-transitive, edge-transitive, face-transitive, cell-transitive |
In geometry, the 5-cubic honeycomb or penteractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 5-space. Four 5-cubes meet at each cubic cell, and it is more explicitly called an order-4 penteractic honeycomb.
It is analogous to the square tiling of the plane and to the cubic honeycomb of 3-space, and the tesseractic honeycomb of 4-space.
Constructions
There are many different Wythoff constructions of this honeycomb. The most symmetric form is regular, with Schläfli symbol {4,3,4}. Another form has two alternating 5-cube facets (like a checkerboard) with Schläfli symbol {4,3,3,3}. The lowest symmetry Wythoff construction has 32 types of facets around each vertex and a prismatic product Schläfli symbol {∞}.
Related polytopes and honeycombs
The , , Coxeter group generates 63 permutations of uniform tessellations, 35 with unique symmetry and 34 with unique geometry. The expanded 5-cubic honeycomb is geometrically identical to the 5-cubic honeycomb.
The 5-cubic honeycomb can be alternated into the 5-demicubic honeycomb, replacing the 5-cubes with 5-demicubes, and the alternated gaps are filled by 5-orthoplex facets.
It is also related to the regular 6-cube which exists in 6-space with three 5-cubes on each cell. This could be considered as a tessellation on the 5-sphere, an order-3 penteractic honeycomb, {4,3}.
The Penrose tilings are 2-dimensional aperiodic tilings that can be obtained as a projection of the 5-cubic honeycomb along a 5-fold rotational axis of symmetry. The vertices correspond to points in the 5-dimensional cubic lattice, and the tiles are formed by connecting points in a predefined manner.
Tritruncated 5-cubic honeycomb
A tritruncated 5-cubic honeycomb, , contains all bitruncated 5-orthoplex facets and is the Voronoi tessellation of the D5 lattice. Facets can be identically colored from a doubled ×2, ] symmetry, alternately colored from , symmetry, three colors from , symmetry, and 4 colors from , symmetry.
See also
Regular and uniform honeycombs in 5-space:
- 5-demicubic honeycomb
- 5-simplex honeycomb
- Truncated 5-simplex honeycomb
- Omnitruncated 5-simplex honeycomb
References
- de Bruijn, N. G. (1981). "Algebraic theory of Penrose's non-periodic tilings of the plane, I, II" (PDF). Indagationes Mathematicae. 43 (1): 39–66. doi:10.1016/1385-7258(81)90017-2.
- Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 p. 296, Table II: Regular honeycombs
- Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III,
Fundamental convex regular and uniform honeycombs in dimensions 2–9 | ||||||
---|---|---|---|---|---|---|
Space | Family | / / | ||||
E | Uniform tiling | 0 | δ3 | hδ3 | qδ3 | Hexagonal |
E | Uniform convex honeycomb | 0 | δ4 | hδ4 | qδ4 | |
E | Uniform 4-honeycomb | 0 | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E | Uniform 5-honeycomb | 0 | δ6 | hδ6 | qδ6 | |
E | Uniform 6-honeycomb | 0 | δ7 | hδ7 | qδ7 | 222 |
E | Uniform 7-honeycomb | 0 | δ8 | hδ8 | qδ8 | 133 • 331 |
E | Uniform 8-honeycomb | 0 | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E | Uniform 9-honeycomb | 0 | δ10 | hδ10 | qδ10 | |
E | Uniform 10-honeycomb | 0 | δ11 | hδ11 | qδ11 | |
E | Uniform (n-1)-honeycomb | 0 | δn | hδn | qδn | 1k2 • 2k1 • k21 |