8-simplex honeycomb | |
---|---|
(No image) | |
Type | Uniform 8-honeycomb |
Family | Simplectic honeycomb |
Schläfli symbol | {3} = 0 |
Coxeter diagram | |
6-face types | {3} , t1{3} t2{3} , t3{3} |
6-face types | {3} , t1{3} t2{3} , t3{3} |
6-face types | {3} , t1{3} t2{3} |
5-face types | {3} , t1{3} t2{3} |
4-face types | {3} , t1{3} |
Cell types | {3,3} , t1{3,3} |
Face types | {3} |
Vertex figure | t0,7{3} |
Symmetry | ×2, ] |
Properties | vertex-transitive |
In eighth-dimensional Euclidean geometry, the 8-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 8-simplex, rectified 8-simplex, birectified 8-simplex, and trirectified 8-simplex facets. These facet types occur in proportions of 1:1:1:1 respectively in the whole honeycomb.
A8 lattice
This vertex arrangement is called the A8 lattice or 8-simplex lattice. The 72 vertices of the expanded 8-simplex vertex figure represent the 72 roots of the Coxeter group. It is the 8-dimensional case of a simplectic honeycomb. Around each vertex figure are 510 facets: 9+9 8-simplex, 36+36 rectified 8-simplex, 84+84 birectified 8-simplex, 126+126 trirectified 8-simplex, with the count distribution from the 10th row of Pascal's triangle.
contains as a subgroup of index 5760. Both and can be seen as affine extensions of from different nodes:
The A
8 lattice is the union of three A8 lattices, and also identical to the E8 lattice.
- ∪ ∪ = .
The A
8 lattice (also called A
8) is the union of nine A8 lattices, and has the vertex arrangement of the dual honeycomb to the omnitruncated 8-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 8-simplex
∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ = dual of .
Related polytopes and honeycombs
This honeycomb is one of 45 unique uniform honeycombs constructed by the Coxeter group. The symmetry can be multiplied by the ring symmetry of the Coxeter diagrams:
A8 honeycombs | ||||
---|---|---|---|---|
Enneagon symmetry |
Symmetry | Extended diagram |
Extended group |
Honeycombs |
a1 |
| |||
i2 | ] | ×2 |
| |
i6 | ] | ×6 | ||
r18 | ] | ×18 | 3 |
Projection by folding
The 8-simplex honeycomb can be projected into the 4-dimensional tesseractic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:
See also
- Regular and uniform honeycombs in 8-space:
Notes
- "The Lattice A8".
- N.W. Johnson: Geometries and Transformations, (2018) Chapter 12: Euclidean symmetry groups, p.294
- Kaleidoscopes: Selected Writings of H. S. M. Coxeter, Paper 18, "Extreme forms" (1950)
- * Weisstein, Eric W. "Necklace". MathWorld., OEIS sequence A000029 46-1 cases, skipping one with zero marks
References
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, (1.9 Uniform space-fillings)
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III,
Fundamental convex regular and uniform honeycombs in dimensions 2–9 | ||||||
---|---|---|---|---|---|---|
Space | Family | / / | ||||
E | Uniform tiling | 0 | δ3 | hδ3 | qδ3 | Hexagonal |
E | Uniform convex honeycomb | 0 | δ4 | hδ4 | qδ4 | |
E | Uniform 4-honeycomb | 0 | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E | Uniform 5-honeycomb | 0 | δ6 | hδ6 | qδ6 | |
E | Uniform 6-honeycomb | 0 | δ7 | hδ7 | qδ7 | 222 |
E | Uniform 7-honeycomb | 0 | δ8 | hδ8 | qδ8 | 133 • 331 |
E | Uniform 8-honeycomb | 0 | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E | Uniform 9-honeycomb | 0 | δ10 | hδ10 | qδ10 | |
E | Uniform 10-honeycomb | 0 | δ11 | hδ11 | qδ11 | |
E | Uniform (n-1)-honeycomb | 0 | δn | hδn | qδn | 1k2 • 2k1 • k21 |