Misplaced Pages

Narcissistic number

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Armstrong number) Integer expressible as the sum of its own digits each raised to the power of the number of digits For other uses, see Narcissism (disambiguation).

In number theory, a narcissistic number (also known as a pluperfect digital invariant (PPDI), an Armstrong number (after Michael F. Armstrong) or a plus perfect number) in a given number base b {\displaystyle b} is a number that is the sum of its own digits each raised to the power of the number of digits.

Definition

Let n {\displaystyle n} be a natural number. We define the narcissistic function for base b > 1 {\displaystyle b>1} F b : N N {\displaystyle F_{b}:\mathbb {N} \rightarrow \mathbb {N} } to be the following:

F b ( n ) = i = 0 k 1 d i k . {\displaystyle F_{b}(n)=\sum _{i=0}^{k-1}d_{i}^{k}.}

where k = log b n + 1 {\displaystyle k=\lfloor \log _{b}{n}\rfloor +1} is the number of digits in the number in base b {\displaystyle b} , and

d i = n mod b i + 1 n mod b i b i {\displaystyle d_{i}={\frac {n{\bmod {b^{i+1}}}-n{\bmod {b}}^{i}}{b^{i}}}}

is the value of each digit of the number. A natural number n {\displaystyle n} is a narcissistic number if it is a fixed point for F b {\displaystyle F_{b}} , which occurs if F b ( n ) = n {\displaystyle F_{b}(n)=n} . The natural numbers 0 n < b {\displaystyle 0\leq n<b} are trivial narcissistic numbers for all b {\displaystyle b} , all other narcissistic numbers are nontrivial narcissistic numbers.

For example, the number 153 in base b = 10 {\displaystyle b=10} is a narcissistic number, because k = 3 {\displaystyle k=3} and 153 = 1 3 + 5 3 + 3 3 {\displaystyle 153=1^{3}+5^{3}+3^{3}} .

A natural number n {\displaystyle n} is a sociable narcissistic number if it is a periodic point for F b {\displaystyle F_{b}} , where F b p ( n ) = n {\displaystyle F_{b}^{p}(n)=n} for a positive integer p {\displaystyle p} (here F b p {\displaystyle F_{b}^{p}} is the p {\displaystyle p} th iterate of F b {\displaystyle F_{b}} ), and forms a cycle of period p {\displaystyle p} . A narcissistic number is a sociable narcissistic number with p = 1 {\displaystyle p=1} , and an amicable narcissistic number is a sociable narcissistic number with p = 2 {\displaystyle p=2} .

All natural numbers n {\displaystyle n} are preperiodic points for F b {\displaystyle F_{b}} , regardless of the base. This is because for any given digit count k {\displaystyle k} , the minimum possible value of n {\displaystyle n} is b k 1 {\displaystyle b^{k-1}} , the maximum possible value of n {\displaystyle n} is b k 1 b k {\displaystyle b^{k}-1\leq b^{k}} , and the narcissistic function value is F b ( n ) = k ( b 1 ) k {\displaystyle F_{b}(n)=k(b-1)^{k}} . Thus, any narcissistic number must satisfy the inequality b k 1 k ( b 1 ) k b k {\displaystyle b^{k-1}\leq k(b-1)^{k}\leq b^{k}} . Multiplying all sides by b ( b 1 ) k {\displaystyle {\frac {b}{(b-1)^{k}}}} , we get ( b b 1 ) k b k b ( b b 1 ) k {\displaystyle {\left({\frac {b}{b-1}}\right)}^{k}\leq bk\leq b{\left({\frac {b}{b-1}}\right)}^{k}} , or equivalently, k ( b b 1 ) k b k {\displaystyle k\leq {\left({\frac {b}{b-1}}\right)}^{k}\leq bk} . Since b b 1 1 {\displaystyle {\frac {b}{b-1}}\geq 1} , this means that there will be a maximum value k {\displaystyle k} where ( b b 1 ) k b k {\displaystyle {\left({\frac {b}{b-1}}\right)}^{k}\leq bk} , because of the exponential nature of ( b b 1 ) k {\displaystyle {\left({\frac {b}{b-1}}\right)}^{k}} and the linearity of b k {\displaystyle bk} . Beyond this value k {\displaystyle k} , F b ( n ) n {\displaystyle F_{b}(n)\leq n} always. Thus, there are a finite number of narcissistic numbers, and any natural number is guaranteed to reach a periodic point or a fixed point less than b k 1 {\displaystyle b^{k}-1} , making it a preperiodic point. Setting b {\displaystyle b} equal to 10 shows that the largest narcissistic number in base 10 must be less than 10 60 {\displaystyle 10^{60}} .

The number of iterations i {\displaystyle i} needed for F b i ( n ) {\displaystyle F_{b}^{i}(n)} to reach a fixed point is the narcissistic function's persistence of n {\displaystyle n} , and undefined if it never reaches a fixed point.

A base b {\displaystyle b} has at least one two-digit narcissistic number if and only if b 2 + 1 {\displaystyle b^{2}+1} is not prime, and the number of two-digit narcissistic numbers in base b {\displaystyle b} equals τ ( b 2 + 1 ) 2 {\displaystyle \tau (b^{2}+1)-2} , where τ ( n ) {\displaystyle \tau (n)} is the number of positive divisors of n {\displaystyle n} .

Every base b 3 {\displaystyle b\geq 3} that is not a multiple of nine has at least one three-digit narcissistic number. The bases that do not are

2, 72, 90, 108, 153, 270, 423, 450, 531, 558, 630, 648, 738, 1044, 1098, 1125, 1224, 1242, 1287, 1440, 1503, 1566, 1611, 1620, 1800, 1935, ... (sequence A248970 in the OEIS)

There are only 88 narcissistic numbers in base 10, of which the largest is

115,132,219,018,763,992,565,095,597,973,971,522,401

with 39 digits.

Narcissistic numbers and cycles of Fb for specific b

All numbers are represented in base b {\displaystyle b} . '#' is the length of each known finite sequence.

b {\displaystyle b} Narcissistic numbers # Cycles OEIS sequence(s)
2 0, 1 2 {\displaystyle \varnothing }
3 0, 1, 2, 12, 22, 122 6 {\displaystyle \varnothing }
4 0, 1, 2, 3, 130, 131, 203, 223, 313, 332, 1103, 3303 12 {\displaystyle \varnothing } A010344 and A010343
5 0, 1, 2, 3, 4, 23, 33, 103, 433, 2124, 2403, 3134, 124030, 124031, 242423, 434434444, ... 18

1234 → 2404 → 4103 → 2323 → 1234

3424 → 4414 → 11034 → 20034 → 20144 → 31311 → 3424

1044302 → 2110314 → 1044302

1043300 → 1131014 → 1043300

A010346
6 0, 1, 2, 3, 4, 5, 243, 514, 14340, 14341, 14432, 23520, 23521, 44405, 435152, 5435254, 12222215, 555435035 ... 31

44 → 52 → 45 → 105 → 330 → 130 → 44

13345 → 33244 → 15514 → 53404 → 41024 → 13345

14523 → 32253 → 25003 → 23424 → 14523

2245352 → 3431045 → 2245352

12444435 → 22045351 → 30145020 → 13531231 → 12444435

115531430 → 230104215 → 115531430

225435342 → 235501040 → 225435342

A010348
7 0, 1, 2, 3, 4, 5, 6, 13, 34, 44, 63, 250, 251, 305, 505, 12205, 12252, 13350, 13351, 15124, 36034, 205145, 1424553, 1433554, 3126542, 4355653, 6515652, 125543055, ... 60 A010350
8 0, 1, 2, 3, 4, 5, 6, 7, 24, 64, 134, 205, 463, 660, 661, 40663, 42710, 42711, 60007, 62047, 636703, 3352072, 3352272, ... 63 A010354 and A010351
9 0, 1, 2, 3, 4, 5, 6, 7, 8, 45, 55, 150, 151, 570, 571, 2446, 12036, 12336, 14462, 2225764, 6275850, 6275851, 12742452, ... 59 A010353
10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 92727, 93084, 548834, ... 88 A005188
11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, 56, 66, 105, 307, 708, 966, A06, A64, 8009, 11720, 11721, 12470, ... 135 A0161948
12 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, 25, A5, 577, 668, A83, 14765, 938A4, 369862, A2394A, ... 88 A161949
13 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, 14, 36, 67, 77, A6, C4, 490, 491, 509, B85, 3964, 22593, 5B350, ... 202 A0161950
14 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, 136, 409, 74AB5, 153A632, ... 103 A0161951
15 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, 78, 88, C3A, D87, 1774, E819, E829, 7995C, 829BB, A36BC, ... 203 A0161952
16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 156, 173, 208, 248, 285, 4A5, 5B0, 5B1, 60B, 64B, 8C0, 8C1, 99A, AA9, AC3, CA8, E69, EA0, EA1, B8D2, 13579, 2B702, 2B722, 5A07C, 5A47C, C00E0, C00E1, C04E0, C04E1, C60E7, C64E7, C80E0, C80E1, C84E0, C84E1, ... 294 A161953

Extension to negative integers

Narcissistic numbers can be extended to the negative integers by use of a signed-digit representation to represent each integer.

See also

References

  1. ^ Weisstein, Eric W. "Narcissistic Number". MathWorld.
  2. Perfect and PluPerfect Digital Invariants Archived 2007-10-10 at the Wayback Machine by Scott Moore
  3. PPDI (Armstrong) Numbers by Harvey Heinz
  4. Armstrong Numbers by Dik T. Winter
  5. Lionel Deimel’s Web Log
  6. (sequence A005188 in the OEIS)
  • Joseph S. Madachy, Mathematics on Vacation, Thomas Nelson & Sons Ltd. 1966, pages 163-175.
  • Rose, Colin (2005), Radical narcissistic numbers, Journal of Recreational Mathematics, 33(4), 2004–2005, pages 250-254.
  • Perfect Digital Invariants by Walter Schneider

External links

Classes of natural numbers
Powers and related numbers
Of the form a × 2 ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
Figurate numbers
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Primes
Pseudoprimes
Arithmetic functions and dynamics
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Other prime factor or divisor related numbers
Numeral system-dependent numbers
Arithmetic functions
and dynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Binary numbers
Generated via a sieve
Sorting related
Natural language related
Graphemics related
Categories: