Misplaced Pages

Highly composite number

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Highly composite numbers) Positive integer with more divisors than all smaller positive integers This article is about numbers having many divisors. For numbers factorized only to powers of 2, 3, 5 and 7 (also named 7-smooth numbers), see Smooth number.
Demonstration, with Cuisenaire rods, of the first four highly composite numbers: 1, 2, 4, 6

A highly composite number is a positive integer that has more divisors than all smaller positive integers. A related concept is that of a largely composite number, a positive integer that has at least as many divisors as all smaller positive integers. The name can be somewhat misleading, as the first two highly composite numbers (1 and 2) are not actually composite numbers; however, all further terms are.

Ramanujan wrote a paper on highly composite numbers in 1915.

The mathematician Jean-Pierre Kahane suggested that Plato must have known about highly composite numbers as he deliberately chose such a number, 5040 (= 7!), as the ideal number of citizens in a city. Furthermore, Vardoulakis and Pugh's paper delves into a similar inquiry concerning the number 5040.

Examples

The first 41 highly composite numbers are listed in the table below (sequence A002182 in the OEIS). The number of divisors is given in the column labeled d(n). Asterisks indicate superior highly composite numbers.

Order HCN
n
prime
factorization
prime
exponents
number
of prime
factors
d(n) primorial
factorization
1 1 0 1
2 2* 2 {\displaystyle 2} 1 1 2 2 {\displaystyle 2}
3 4 2 2 {\displaystyle 2^{2}} 2 2 3 2 2 {\displaystyle 2^{2}}
4 6* 2 3 {\displaystyle 2\cdot 3} 1,1 2 4 6 {\displaystyle 6}
5 12* 2 2 3 {\displaystyle 2^{2}\cdot 3} 2,1 3 6 2 6 {\displaystyle 2\cdot 6}
6 24 2 3 3 {\displaystyle 2^{3}\cdot 3} 3,1 4 8 2 2 6 {\displaystyle 2^{2}\cdot 6}
7 36 2 2 3 2 {\displaystyle 2^{2}\cdot 3^{2}} 2,2 4 9 6 2 {\displaystyle 6^{2}}
8 48 2 4 3 {\displaystyle 2^{4}\cdot 3} 4,1 5 10 2 3 6 {\displaystyle 2^{3}\cdot 6}
9 60* 2 2 3 5 {\displaystyle 2^{2}\cdot 3\cdot 5} 2,1,1 4 12 2 30 {\displaystyle 2\cdot 30}
10 120* 2 3 3 5 {\displaystyle 2^{3}\cdot 3\cdot 5} 3,1,1 5 16 2 2 30 {\displaystyle 2^{2}\cdot 30}
11 180 2 2 3 2 5 {\displaystyle 2^{2}\cdot 3^{2}\cdot 5} 2,2,1 5 18 6 30 {\displaystyle 6\cdot 30}
12 240 2 4 3 5 {\displaystyle 2^{4}\cdot 3\cdot 5} 4,1,1 6 20 2 3 30 {\displaystyle 2^{3}\cdot 30}
13 360* 2 3 3 2 5 {\displaystyle 2^{3}\cdot 3^{2}\cdot 5} 3,2,1 6 24 2 6 30 {\displaystyle 2\cdot 6\cdot 30}
14 720 2 4 3 2 5 {\displaystyle 2^{4}\cdot 3^{2}\cdot 5} 4,2,1 7 30 2 2 6 30 {\displaystyle 2^{2}\cdot 6\cdot 30}
15 840 2 3 3 5 7 {\displaystyle 2^{3}\cdot 3\cdot 5\cdot 7} 3,1,1,1 6 32 2 2 210 {\displaystyle 2^{2}\cdot 210}
16 1260 2 2 3 2 5 7 {\displaystyle 2^{2}\cdot 3^{2}\cdot 5\cdot 7} 2,2,1,1 6 36 6 210 {\displaystyle 6\cdot 210}
17 1680 2 4 3 5 7 {\displaystyle 2^{4}\cdot 3\cdot 5\cdot 7} 4,1,1,1 7 40 2 3 210 {\displaystyle 2^{3}\cdot 210}
18 2520* 2 3 3 2 5 7 {\displaystyle 2^{3}\cdot 3^{2}\cdot 5\cdot 7} 3,2,1,1 7 48 2 6 210 {\displaystyle 2\cdot 6\cdot 210}
19 5040* 2 4 3 2 5 7 {\displaystyle 2^{4}\cdot 3^{2}\cdot 5\cdot 7} 4,2,1,1 8 60 2 2 6 210 {\displaystyle 2^{2}\cdot 6\cdot 210}
20 7560 2 3 3 3 5 7 {\displaystyle 2^{3}\cdot 3^{3}\cdot 5\cdot 7} 3,3,1,1 8 64 6 2 210 {\displaystyle 6^{2}\cdot 210}
21 10080 2 5 3 2 5 7 {\displaystyle 2^{5}\cdot 3^{2}\cdot 5\cdot 7} 5,2,1,1 9 72 2 3 6 210 {\displaystyle 2^{3}\cdot 6\cdot 210}
22 15120 2 4 3 3 5 7 {\displaystyle 2^{4}\cdot 3^{3}\cdot 5\cdot 7} 4,3,1,1 9 80 2 6 2 210 {\displaystyle 2\cdot 6^{2}\cdot 210}
23 20160 2 6 3 2 5 7 {\displaystyle 2^{6}\cdot 3^{2}\cdot 5\cdot 7} 6,2,1,1 10 84 2 4 6 210 {\displaystyle 2^{4}\cdot 6\cdot 210}
24 25200 2 4 3 2 5 2 7 {\displaystyle 2^{4}\cdot 3^{2}\cdot 5^{2}\cdot 7} 4,2,2,1 9 90 2 2 30 210 {\displaystyle 2^{2}\cdot 30\cdot 210}
25 27720 2 3 3 2 5 7 11 {\displaystyle 2^{3}\cdot 3^{2}\cdot 5\cdot 7\cdot 11} 3,2,1,1,1 8 96 2 6 2310 {\displaystyle 2\cdot 6\cdot 2310}
26 45360 2 4 3 4 5 7 {\displaystyle 2^{4}\cdot 3^{4}\cdot 5\cdot 7} 4,4,1,1 10 100 6 3 210 {\displaystyle 6^{3}\cdot 210}
27 50400 2 5 3 2 5 2 7 {\displaystyle 2^{5}\cdot 3^{2}\cdot 5^{2}\cdot 7} 5,2,2,1 10 108 2 3 30 210 {\displaystyle 2^{3}\cdot 30\cdot 210}
28 55440* 2 4 3 2 5 7 11 {\displaystyle 2^{4}\cdot 3^{2}\cdot 5\cdot 7\cdot 11} 4,2,1,1,1 9 120 2 2 6 2310 {\displaystyle 2^{2}\cdot 6\cdot 2310}
29 83160 2 3 3 3 5 7 11 {\displaystyle 2^{3}\cdot 3^{3}\cdot 5\cdot 7\cdot 11} 3,3,1,1,1 9 128 6 2 2310 {\displaystyle 6^{2}\cdot 2310}
30 110880 2 5 3 2 5 7 11 {\displaystyle 2^{5}\cdot 3^{2}\cdot 5\cdot 7\cdot 11} 5,2,1,1,1 10 144 2 3 6 2310 {\displaystyle 2^{3}\cdot 6\cdot 2310}
31 166320 2 4 3 3 5 7 11 {\displaystyle 2^{4}\cdot 3^{3}\cdot 5\cdot 7\cdot 11} 4,3,1,1,1 10 160 2 6 2 2310 {\displaystyle 2\cdot 6^{2}\cdot 2310}
32 221760 2 6 3 2 5 7 11 {\displaystyle 2^{6}\cdot 3^{2}\cdot 5\cdot 7\cdot 11} 6,2,1,1,1 11 168 2 4 6 2310 {\displaystyle 2^{4}\cdot 6\cdot 2310}
33 277200 2 4 3 2 5 2 7 11 {\displaystyle 2^{4}\cdot 3^{2}\cdot 5^{2}\cdot 7\cdot 11} 4,2,2,1,1 10 180 2 2 30 2310 {\displaystyle 2^{2}\cdot 30\cdot 2310}
34 332640 2 5 3 3 5 7 11 {\displaystyle 2^{5}\cdot 3^{3}\cdot 5\cdot 7\cdot 11} 5,3,1,1,1 11 192 2 2 6 2 2310 {\displaystyle 2^{2}\cdot 6^{2}\cdot 2310}
35 498960 2 4 3 4 5 7 11 {\displaystyle 2^{4}\cdot 3^{4}\cdot 5\cdot 7\cdot 11} 4,4,1,1,1 11 200 6 3 2310 {\displaystyle 6^{3}\cdot 2310}
36 554400 2 5 3 2 5 2 7 11 {\displaystyle 2^{5}\cdot 3^{2}\cdot 5^{2}\cdot 7\cdot 11} 5,2,2,1,1 11 216 2 3 30 2310 {\displaystyle 2^{3}\cdot 30\cdot 2310}
37 665280 2 6 3 3 5 7 11 {\displaystyle 2^{6}\cdot 3^{3}\cdot 5\cdot 7\cdot 11} 6,3,1,1,1 12 224 2 3 6 2 2310 {\displaystyle 2^{3}\cdot 6^{2}\cdot 2310}
38 720720* 2 4 3 2 5 7 11 13 {\displaystyle 2^{4}\cdot 3^{2}\cdot 5\cdot 7\cdot 11\cdot 13} 4,2,1,1,1,1 10 240 2 2 6 30030 {\displaystyle 2^{2}\cdot 6\cdot 30030}
39 1081080 2 3 3 3 5 7 11 13 {\displaystyle 2^{3}\cdot 3^{3}\cdot 5\cdot 7\cdot 11\cdot 13} 3,3,1,1,1,1 10 256 6 2 30030 {\displaystyle 6^{2}\cdot 30030}
40 1441440* 2 5 3 2 5 7 11 13 {\displaystyle 2^{5}\cdot 3^{2}\cdot 5\cdot 7\cdot 11\cdot 13} 5,2,1,1,1,1 11 288 2 3 6 30030 {\displaystyle 2^{3}\cdot 6\cdot 30030}
41 2162160 2 4 3 3 5 7 11 13 {\displaystyle 2^{4}\cdot 3^{3}\cdot 5\cdot 7\cdot 11\cdot 13} 4,3,1,1,1,1 11 320 2 6 2 30030 {\displaystyle 2\cdot 6^{2}\cdot 30030}

The divisors of the first 19 highly composite numbers are shown below.

n d(n) Divisors of n
1 1 1
2 2 1, 2
4 3 1, 2, 4
6 4 1, 2, 3, 6
12 6 1, 2, 3, 4, 6, 12
24 8 1, 2, 3, 4, 6, 8, 12, 24
36 9 1, 2, 3, 4, 6, 9, 12, 18, 36
48 10 1, 2, 3, 4, 6, 8, 12, 16, 24, 48
60 12 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
120 16 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120
180 18 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180
240 20 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240
360 24 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360
720 30 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720
840 32 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840
1260 36 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 21, 28, 30, 35, 36, 42, 45, 60, 63, 70, 84, 90, 105, 126, 140, 180, 210, 252, 315, 420, 630, 1260
1680 40 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 20, 21, 24, 28, 30, 35, 40, 42, 48, 56, 60, 70, 80, 84, 105, 112, 120, 140, 168, 210, 240, 280, 336, 420, 560, 840, 1680
2520 48 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 56, 60, 63, 70, 72, 84, 90, 105, 120, 126, 140, 168, 180, 210, 252, 280, 315, 360, 420, 504, 630, 840, 1260, 2520
5040 60 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210, 240, 252, 280, 315, 336, 360, 420, 504, 560, 630, 720, 840, 1008, 1260, 1680, 2520, 5040

The table below shows all 72 divisors of 10080 by writing it as a product of two numbers in 36 different ways.

The highly composite number: 10080
10080 = (2 × 2 × 2 × 2 × 2)  ×  (3 × 3)  ×  5  ×  7
1
×
10080
2
×
5040
3
×
3360
4
×
2520
5
×
2016
6
×
1680
7
×
1440
8
×
1260
9
×
1120
10
×
1008
12
×
840
14
×
720
15
×
672
16
×
630
18
×
560
20
×
504
21
×
480
24
×
420
28
×
360
30
×
336
32
×
315
35
×
288
36
×
280
40
×
252
42
×
240
45
×
224
48
×
210
56
×
180
60
×
168
63
×
160
70
×
144
72
×
140
80
×
126
84
×
120
90
×
112
96
×
105
Note:  Numbers in bold are themselves highly composite numbers.
Only the twentieth highly composite number 7560 (= 3 × 2520) is absent.
10080 is a so-called 7-smooth number (sequence A002473 in the OEIS).

The 15,000th highly composite number can be found on Achim Flammenkamp's website. It is the product of 230 primes:

a 0 14 a 1 9 a 2 6 a 3 4 a 4 4 a 5 3 a 6 3 a 7 3 a 8 2 a 9 2 a 10 2 a 11 2 a 12 2 a 13 2 a 14 2 a 15 2 a 16 2 a 17 2 a 18 2 a 19 a 20 a 21 a 229 , {\displaystyle a_{0}^{14}a_{1}^{9}a_{2}^{6}a_{3}^{4}a_{4}^{4}a_{5}^{3}a_{6}^{3}a_{7}^{3}a_{8}^{2}a_{9}^{2}a_{10}^{2}a_{11}^{2}a_{12}^{2}a_{13}^{2}a_{14}^{2}a_{15}^{2}a_{16}^{2}a_{17}^{2}a_{18}^{2}a_{19}a_{20}a_{21}\cdots a_{229},}

where a n {\displaystyle a_{n}} is the n {\displaystyle n} th successive prime number, and all omitted terms (a22 to a228) are factors with exponent equal to one (i.e. the number is 2 14 × 3 9 × 5 6 × × 1451 {\displaystyle 2^{14}\times 3^{9}\times 5^{6}\times \cdots \times 1451} ). More concisely, it is the product of seven distinct primorials:

b 0 5 b 1 3 b 2 2 b 4 b 7 b 18 b 229 , {\displaystyle b_{0}^{5}b_{1}^{3}b_{2}^{2}b_{4}b_{7}b_{18}b_{229},}

where b n {\displaystyle b_{n}} is the primorial a 0 a 1 a n {\displaystyle a_{0}a_{1}\cdots a_{n}} .

Prime factorization

Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are labelled in bold and superior highly composite numbers are starred. In the SVG file, hover over a bar to see its statistics.

Roughly speaking, for a number to be highly composite it has to have prime factors as small as possible, but not too many of the same. By the fundamental theorem of arithmetic, every positive integer n has a unique prime factorization:

n = p 1 c 1 × p 2 c 2 × × p k c k {\displaystyle n=p_{1}^{c_{1}}\times p_{2}^{c_{2}}\times \cdots \times p_{k}^{c_{k}}}

where p 1 < p 2 < < p k {\displaystyle p_{1}<p_{2}<\cdots <p_{k}} are prime, and the exponents c i {\displaystyle c_{i}} are positive integers.

Any factor of n must have the same or lesser multiplicity in each prime:

p 1 d 1 × p 2 d 2 × × p k d k , 0 d i c i , 0 < i k {\displaystyle p_{1}^{d_{1}}\times p_{2}^{d_{2}}\times \cdots \times p_{k}^{d_{k}},0\leq d_{i}\leq c_{i},0<i\leq k}

So the number of divisors of n is:

d ( n ) = ( c 1 + 1 ) × ( c 2 + 1 ) × × ( c k + 1 ) . {\displaystyle d(n)=(c_{1}+1)\times (c_{2}+1)\times \cdots \times (c_{k}+1).}

Hence, for a highly composite number n,

  • the k given prime numbers pi must be precisely the first k prime numbers (2, 3, 5, ...); if not, we could replace one of the given primes by a smaller prime, and thus obtain a smaller number than n with the same number of divisors (for instance 10 = 2 × 5 may be replaced with 6 = 2 × 3; both have four divisors);
  • the sequence of exponents must be non-increasing, that is c 1 c 2 c k {\displaystyle c_{1}\geq c_{2}\geq \cdots \geq c_{k}} ; otherwise, by exchanging two exponents we would again get a smaller number than n with the same number of divisors (for instance 18 = 2 × 3 may be replaced with 12 = 2 × 3; both have six divisors).

Also, except in two special cases n = 4 and n = 36, the last exponent ck must equal 1. It means that 1, 4, and 36 are the only square highly composite numbers. Saying that the sequence of exponents is non-increasing is equivalent to saying that a highly composite number is a product of primorials or, alternatively, the smallest number for its prime signature.

Note that although the above described conditions are necessary, they are not sufficient for a number to be highly composite. For example, 96 = 2 × 3 satisfies the above conditions and has 12 divisors but is not highly composite since there is a smaller number (60) which has the same number of divisors.

Asymptotic growth and density

If Q(x) denotes the number of highly composite numbers less than or equal to x, then there are two constants a and b, both greater than 1, such that

( log x ) a Q ( x ) ( log x ) b . {\displaystyle (\log x)^{a}\leq Q(x)\leq (\log x)^{b}\,.}

The first part of the inequality was proved by Paul Erdős in 1944 and the second part by Jean-Louis Nicolas in 1988. We have

1.13862 < lim inf log Q ( x ) log log x 1.44   {\displaystyle 1.13862<\liminf {\frac {\log Q(x)}{\log \log x}}\leq 1.44\ }

and

lim sup log Q ( x ) log log x 1.71   . {\displaystyle \limsup {\frac {\log Q(x)}{\log \log x}}\leq 1.71\ .}

Related sequences

Euler diagram of numbers under 100:    Abundant    Primitive abundant    Highly abundant    Superabundant and highly composite    Colossally abundant and superior highly composite    Weird    Perfect    Composite    Deficient

Highly composite numbers greater than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is 245,044,800; it has a digit sum of 27, which does not divide evenly into 245,044,800.

10 of the first 38 highly composite numbers are superior highly composite numbers. The sequence of highly composite numbers (sequence A002182 in the OEIS) is a subset of the sequence of smallest numbers k with exactly n divisors (sequence A005179 in the OEIS).

Highly composite numbers whose number of divisors is also a highly composite number are

1, 2, 6, 12, 60, 360, 1260, 2520, 5040, 55440, 277200, 720720, 3603600, 61261200, 2205403200, 293318625600, 6746328388800, 195643523275200 (sequence A189394 in the OEIS).

It is extremely likely that this sequence is complete.

A positive integer n is a largely composite number if d(n) ≥ d(m) for all mn. The counting function QL(x) of largely composite numbers satisfies

( log x ) c log Q L ( x ) ( log x ) d   {\displaystyle (\log x)^{c}\leq \log Q_{L}(x)\leq (\log x)^{d}\ }

for positive c and d with 0.2 c d 0.5 {\displaystyle 0.2\leq c\leq d\leq 0.5} .

Because the prime factorization of a highly composite number uses all of the first k primes, every highly composite number must be a practical number. Due to their ease of use in calculations involving fractions, many of these numbers are used in traditional systems of measurement and engineering designs.

See also

Notes

  1. Ramanujan, S. (1915). "Highly composite numbers" (PDF). Proc. London Math. Soc. Series 2. 14: 347–409. doi:10.1112/plms/s2_14.1.347. JFM 45.1248.01.
  2. Kahane, Jean-Pierre (February 2015), "Bernoulli convolutions and self-similar measures after Erdős: A personal hors d'oeuvre", Notices of the American Mathematical Society, 62 (2): 136–140. Kahane cites Plato's Laws, 771c.
  3. Vardoulakis, Antonis; Pugh, Clive (September 2008), "Plato's hidden theorem on the distribution of primes", The Mathematical Intelligencer, 30 (3): 61–63, doi:10.1007/BF02985381.
  4. Flammenkamp, Achim, Highly Composite Numbers.
  5. Sándor et al. (2006) p. 45
  6. Sándor et al. (2006) p. 46
  7. Nicolas, Jean-Louis (1979). "Répartition des nombres largement composés". Acta Arith. (in French). 34 (4): 379–390. doi:10.4064/aa-34-4-379-390. Zbl 0368.10032.
  8. Srinivasan, A. K. (1948), "Practical numbers" (PDF), Current Science, 17: 179–180, MR 0027799.

References

External links

Divisibility-based sets of integers
Overview Divisibility of 60
Factorization forms
Constrained divisor sums
With many divisors
Aliquot sequence-related
Base-dependent
Other sets
Classes of natural numbers
Powers and related numbers
Of the form a × 2 ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
Figurate numbers
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Primes
Pseudoprimes
Arithmetic functions and dynamics
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Other prime factor or divisor related numbers
Numeral system-dependent numbers
Arithmetic functions
and dynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Binary numbers
Generated via a sieve
Sorting related
Natural language related
Graphemics related
Categories: