Misplaced Pages

List of limits

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Infinity tricks)

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "List of limits" – news · newspapers · books · scholar · JSTOR (August 2019) (Learn how and when to remove this message)
This list is incomplete; you can help by adding missing items. (February 2011)

This is a list of limits for common functions such as elementary functions. In this article, the terms a, b and c are constants with respect to x.

Limits for general functions

Definitions of limits and related concepts

lim x c f ( x ) = L {\displaystyle \lim _{x\to c}f(x)=L} if and only if ε > 0   δ > 0 : 0 < | x c | < δ | f ( x ) L | < ε {\displaystyle \forall \varepsilon >0\ \exists \delta >0:0<|x-c|<\delta \implies |f(x)-L|<\varepsilon } . This is the (ε, δ)-definition of limit.

The limit superior and limit inferior of a sequence are defined as lim sup n x n = lim n ( sup m n x m ) {\displaystyle \limsup _{n\to \infty }x_{n}=\lim _{n\to \infty }\left(\sup _{m\geq n}x_{m}\right)} and lim inf n x n = lim n ( inf m n x m ) {\displaystyle \liminf _{n\to \infty }x_{n}=\lim _{n\to \infty }\left(\inf _{m\geq n}x_{m}\right)} .

A function, f ( x ) {\displaystyle f(x)} , is said to be continuous at a point, c, if lim x c f ( x ) = f ( c ) . {\displaystyle \lim _{x\to c}f(x)=f(c).}

Operations on a single known limit

If lim x c f ( x ) = L {\displaystyle \lim _{x\to c}f(x)=L} then:

  • lim x c [ f ( x ) ± a ] = L ± a {\displaystyle \lim _{x\to c}\,=L\pm a}
  • lim x c a f ( x ) = a L {\displaystyle \lim _{x\to c}\,af(x)=aL}
  • lim x c 1 f ( x ) = 1 L {\displaystyle \lim _{x\to c}{\frac {1}{f(x)}}={\frac {1}{L}}} if L is not equal to 0.
  • lim x c f ( x ) n = L n {\displaystyle \lim _{x\to c}\,f(x)^{n}=L^{n}} if n is a positive integer
  • lim x c f ( x ) 1 n = L 1 n {\displaystyle \lim _{x\to c}\,f(x)^{1 \over n}=L^{1 \over n}} if n is a positive integer, and if n is even, then L > 0.

In general, if g(x) is continuous at L and lim x c f ( x ) = L {\displaystyle \lim _{x\to c}f(x)=L} then

  • lim x c g ( f ( x ) ) = g ( L ) {\displaystyle \lim _{x\to c}g\left(f(x)\right)=g(L)}

Operations on two known limits

If lim x c f ( x ) = L 1 {\displaystyle \lim _{x\to c}f(x)=L_{1}} and lim x c g ( x ) = L 2 {\displaystyle \lim _{x\to c}g(x)=L_{2}} then:

  • lim x c [ f ( x ) ± g ( x ) ] = L 1 ± L 2 {\displaystyle \lim _{x\to c}\,=L_{1}\pm L_{2}}
  • lim x c [ f ( x ) g ( x ) ] = L 1 L 2 {\displaystyle \lim _{x\to c}\,=L_{1}\cdot L_{2}}
  • lim x c f ( x ) g ( x ) = L 1 L 2  if  L 2 0 {\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}={\frac {L_{1}}{L_{2}}}\qquad {\text{ if }}L_{2}\neq 0}

Limits involving derivatives or infinitesimal changes

In these limits, the infinitesimal change h {\displaystyle h} is often denoted Δ x {\displaystyle \Delta x} or δ x {\displaystyle \delta x} . If f ( x ) {\displaystyle f(x)} is differentiable at x {\displaystyle x} ,

  • lim h 0 f ( x + h ) f ( x ) h = f ( x ) {\displaystyle \lim _{h\to 0}{f(x+h)-f(x) \over h}=f'(x)} . This is the definition of the derivative. All differentiation rules can also be reframed as rules involving limits. For example, if g(x) is differentiable at x,
    • lim h 0 f g ( x + h ) f g ( x ) h = f [ g ( x ) ] g ( x ) {\displaystyle \lim _{h\to 0}{f\circ g(x+h)-f\circ g(x) \over h}=f'g'(x)} . This is the chain rule.
    • lim h 0 f ( x + h ) g ( x + h ) f ( x ) g ( x ) h = f ( x ) g ( x ) + f ( x ) g ( x ) {\displaystyle \lim _{h\to 0}{f(x+h)g(x+h)-f(x)g(x) \over h}=f'(x)g(x)+f(x)g'(x)} . This is the product rule.
  • lim h 0 ( f ( x + h ) f ( x ) ) 1 / h = exp ( f ( x ) f ( x ) ) {\displaystyle \lim _{h\to 0}\left({\frac {f(x+h)}{f(x)}}\right)^{1/h}=\exp \left({\frac {f'(x)}{f(x)}}\right)}
  • lim h 0 ( f ( e h x ) f ( x ) ) 1 / h = exp ( x f ( x ) f ( x ) ) {\displaystyle \lim _{h\to 0}{\left({f(e^{h}x) \over {f(x)}}\right)^{1/h}}=\exp \left({\frac {xf'(x)}{f(x)}}\right)}

If f ( x ) {\displaystyle f(x)} and g ( x ) {\displaystyle g(x)} are differentiable on an open interval containing c, except possibly c itself, and lim x c f ( x ) = lim x c g ( x ) = 0  or  ± {\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}g(x)=0{\text{ or }}\pm \infty } , L'Hôpital's rule can be used:

  • lim x c f ( x ) g ( x ) = lim x c f ( x ) g ( x ) {\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}}

Inequalities

If f ( x ) g ( x ) {\displaystyle f(x)\leq g(x)} for all x in an interval that contains c, except possibly c itself, and the limit of f ( x ) {\displaystyle f(x)} and g ( x ) {\displaystyle g(x)} both exist at c, then lim x c f ( x ) lim x c g ( x ) {\displaystyle \lim _{x\to c}f(x)\leq \lim _{x\to c}g(x)}

If lim x c f ( x ) = lim x c h ( x ) = L {\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}h(x)=L} and f ( x ) g ( x ) h ( x ) {\displaystyle f(x)\leq g(x)\leq h(x)} for all x in an open interval that contains c, except possibly c itself, lim x c g ( x ) = L . {\displaystyle \lim _{x\to c}g(x)=L.} This is known as the squeeze theorem. This applies even in the cases that f(x) and g(x) take on different values at c, or are discontinuous at c.

Polynomials and functions of the form x

  • lim x c a = a {\displaystyle \lim _{x\to c}a=a}

Polynomials in x

  • lim x c x = c {\displaystyle \lim _{x\to c}x=c}
  • lim x c ( a x + b ) = a c + b {\displaystyle \lim _{x\to c}(ax+b)=ac+b}
  • lim x c x n = c n {\displaystyle \lim _{x\to c}x^{n}=c^{n}} if n is a positive integer
  • lim x x / a = { , a > 0 does not exist , a = 0 , a < 0 {\displaystyle \lim _{x\to \infty }x/a={\begin{cases}\infty ,&a>0\\{\text{does not exist}},&a=0\\-\infty ,&a<0\end{cases}}}

In general, if p ( x ) {\displaystyle p(x)} is a polynomial then, by the continuity of polynomials, lim x c p ( x ) = p ( c ) {\displaystyle \lim _{x\to c}p(x)=p(c)} This is also true for rational functions, as they are continuous on their domains.

Functions of the form x

  • lim x c x a = c a . {\displaystyle \lim _{x\to c}x^{a}=c^{a}.} In particular,
    • lim x x a = { , a > 0 1 , a = 0 0 , a < 0 {\displaystyle \lim _{x\to \infty }x^{a}={\begin{cases}\infty ,&a>0\\1,&a=0\\0,&a<0\end{cases}}}
  • lim x c x 1 / a = c 1 / a {\displaystyle \lim _{x\to c}x^{1/a}=c^{1/a}} . In particular,
    • lim x x 1 / a = lim x x a =  for any  a > 0 {\displaystyle \lim _{x\to \infty }x^{1/a}=\lim _{x\to \infty }{\sqrt{x}}=\infty {\text{ for any }}a>0}
  • lim x 0 + x n = lim x 0 + 1 x n = + {\displaystyle \lim _{x\to 0^{+}}x^{-n}=\lim _{x\to 0^{+}}{\frac {1}{x^{n}}}=+\infty }
  • lim x 0 x n = lim x 0 1 x n = { , if  n  is odd + , if  n  is even {\displaystyle \lim _{x\to 0^{-}}x^{-n}=\lim _{x\to 0^{-}}{\frac {1}{x^{n}}}={\begin{cases}-\infty ,&{\text{if }}n{\text{ is odd}}\\+\infty ,&{\text{if }}n{\text{ is even}}\end{cases}}}
  • lim x a x 1 = lim x a / x = 0  for any real  a {\displaystyle \lim _{x\to \infty }ax^{-1}=\lim _{x\to \infty }a/x=0{\text{ for any real }}a}

Exponential functions

Functions of the form a

  • lim x c e x = e c {\displaystyle \lim _{x\to c}e^{x}=e^{c}} , due to the continuity of e x {\displaystyle e^{x}}
  • lim x a x = { , a > 1 1 , a = 1 0 , 0 < a < 1 {\displaystyle \lim _{x\to \infty }a^{x}={\begin{cases}\infty ,&a>1\\1,&a=1\\0,&0<a<1\end{cases}}}
  • lim x a x = { 0 , a > 1 1 , a = 1 , 0 < a < 1 {\displaystyle \lim _{x\to \infty }a^{-x}={\begin{cases}0,&a>1\\1,&a=1\\\infty ,&0<a<1\end{cases}}}
  • lim x a x = lim x a 1 / x = { 1 , a > 0 0 , a = 0 does not exist , a < 0 {\displaystyle \lim _{x\to \infty }{\sqrt{a}}=\lim _{x\to \infty }{a}^{1/x}={\begin{cases}1,&a>0\\0,&a=0\\{\text{does not exist}},&a<0\end{cases}}}

Functions of the form x

  • lim x x x = lim x x 1 / x = 1 {\displaystyle \lim _{x\to \infty }{\sqrt{x}}=\lim _{x\to \infty }{x}^{1/x}=1}

Functions of the form f(x)

  • lim x + ( x x + k ) x = e k {\displaystyle \lim _{x\to +\infty }\left({\frac {x}{x+k}}\right)^{x}=e^{-k}}
  • lim x 0 ( 1 + x ) 1 x = e {\displaystyle \lim _{x\to 0}\left(1+x\right)^{\frac {1}{x}}=e}
  • lim x 0 ( 1 + k x ) m x = e m k {\displaystyle \lim _{x\to 0}\left(1+kx\right)^{\frac {m}{x}}=e^{mk}}
  • lim x + ( 1 + 1 x ) x = e {\displaystyle \lim _{x\to +\infty }\left(1+{\frac {1}{x}}\right)^{x}=e}
  • lim x + ( 1 1 x ) x = 1 e {\displaystyle \lim _{x\to +\infty }\left(1-{\frac {1}{x}}\right)^{x}={\frac {1}{e}}}
  • lim x + ( 1 + k x ) m x = e m k {\displaystyle \lim _{x\to +\infty }\left(1+{\frac {k}{x}}\right)^{mx}=e^{mk}}
  • lim x 0 ( 1 + a ( e x 1 ) ) 1 x = e a {\displaystyle \lim _{x\to 0}\left(1+a\left({e^{-x}-1}\right)\right)^{-{\frac {1}{x}}}=e^{a}} . This limit can be derived from this limit.

Sums, products and composites

  • lim x 0 x e x = 0 {\displaystyle \lim _{x\to 0}xe^{-x}=0}
  • lim x x e x = 0 {\displaystyle \lim _{x\to \infty }xe^{-x}=0}
  • lim x 0 ( a x 1 x ) = ln a , {\displaystyle \lim _{x\to 0}\left({\frac {a^{x}-1}{x}}\right)=\ln {a},} for all positive a.
  • lim x 0 ( e x 1 x ) = 1 {\displaystyle \lim _{x\to 0}\left({\frac {e^{x}-1}{x}}\right)=1}
  • lim x 0 ( e a x 1 x ) = a {\displaystyle \lim _{x\to 0}\left({\frac {e^{ax}-1}{x}}\right)=a}

Logarithmic functions

Natural logarithms

  • lim x c ln x = ln c {\displaystyle \lim _{x\to c}\ln {x}=\ln c} , due to the continuity of ln x {\displaystyle \ln {x}} . In particular,
    • lim x 0 + log x = {\displaystyle \lim _{x\to 0^{+}}\log x=-\infty }
    • lim x log x = {\displaystyle \lim _{x\to \infty }\log x=\infty }
  • lim x 1 ln ( x ) x 1 = 1 {\displaystyle \lim _{x\to 1}{\frac {\ln(x)}{x-1}}=1}
  • lim x 0 ln ( x + 1 ) x = 1 {\displaystyle \lim _{x\to 0}{\frac {\ln(x+1)}{x}}=1}
  • lim x 0 ln ( 1 + a ( e x 1 ) ) x = a {\displaystyle \lim _{x\to 0}{\frac {-\ln \left(1+a\left({e^{-x}-1}\right)\right)}{x}}=a} . This limit follows from L'Hôpital's rule.
  • lim x 0 x ln x = 0 {\displaystyle \lim _{x\to 0}x\ln x=0} , hence lim x 0 x x = 1 {\displaystyle \lim _{x\to 0}x^{x}=1}
  • lim x ln x x = 0 {\displaystyle \lim _{x\to \infty }{\frac {\ln x}{x}}=0}

Logarithms to arbitrary bases

For b > 1,

  • lim x 0 + log b x = {\displaystyle \lim _{x\to 0^{+}}\log _{b}x=-\infty }
  • lim x log b x = {\displaystyle \lim _{x\to \infty }\log _{b}x=\infty }

For b < 1,

  • lim x 0 + log b x = {\displaystyle \lim _{x\to 0^{+}}\log _{b}x=\infty }
  • lim x log b x = {\displaystyle \lim _{x\to \infty }\log _{b}x=-\infty }

Both cases can be generalized to:

  • lim x 0 + log b x = F ( b ) {\displaystyle \lim _{x\to 0^{+}}\log _{b}x=-F(b)\infty }
  • lim x log b x = F ( b ) {\displaystyle \lim _{x\to \infty }\log _{b}x=F(b)\infty }

where F ( x ) = 2 H ( x 1 ) 1 {\displaystyle F(x)=2H(x-1)-1} and H ( x ) {\displaystyle H(x)} is the Heaviside step function

Trigonometric functions

If x {\displaystyle x} is expressed in radians:

  • lim x a sin x = sin a {\displaystyle \lim _{x\to a}\sin x=\sin a}
  • lim x a cos x = cos a {\displaystyle \lim _{x\to a}\cos x=\cos a}

These limits both follow from the continuity of sin and cos.

  • lim x 0 sin x x = 1 {\displaystyle \lim _{x\to 0}{\frac {\sin x}{x}}=1} . Or, in general,
    • lim x 0 sin a x a x = 1 {\displaystyle \lim _{x\to 0}{\frac {\sin ax}{ax}}=1} , for a not equal to 0.
    • lim x 0 sin a x x = a {\displaystyle \lim _{x\to 0}{\frac {\sin ax}{x}}=a}
    • lim x 0 sin a x b x = a b {\displaystyle \lim _{x\to 0}{\frac {\sin ax}{bx}}={\frac {a}{b}}} , for b not equal to 0.
  • lim x x sin ( 1 x ) = 1 {\displaystyle \lim _{x\to \infty }x\sin \left({\frac {1}{x}}\right)=1}
  • lim x 0 1 cos x x = lim x 0 cos x 1 x = 0 {\displaystyle \lim _{x\to 0}{\frac {1-\cos x}{x}}=\lim _{x\to 0}{\frac {\cos x-1}{x}}=0}
  • lim x 0 1 cos x x 2 = 1 2 {\displaystyle \lim _{x\to 0}{\frac {1-\cos x}{x^{2}}}={\frac {1}{2}}}
  • lim x n ± tan ( π x + π 2 ) = {\displaystyle \lim _{x\to n^{\pm }}\tan \left(\pi x+{\frac {\pi }{2}}\right)=\mp \infty } , for integer n.
  • lim x 0 tan x x = 1 {\displaystyle \lim _{x\to 0}{\frac {\tan x}{x}}=1} . Or, in general,
    • lim x 0 tan a x a x = 1 {\displaystyle \lim _{x\to 0}{\frac {\tan ax}{ax}}=1} , for a not equal to 0.
    • lim x 0 tan a x b x = a b {\displaystyle \lim _{x\to 0}{\frac {\tan ax}{bx}}={\frac {a}{b}}} , for b not equal to 0.
  • lim n   sin sin sin ( x 0 ) n = 0 {\displaystyle \lim _{n\to \infty }\ \underbrace {\sin \sin \cdots \sin(x_{0})} _{n}=0} , where x0 is an arbitrary real number.
  • lim n   cos cos cos ( x 0 ) n = d {\displaystyle \lim _{n\to \infty }\ \underbrace {\cos \cos \cdots \cos(x_{0})} _{n}=d} , where d is the Dottie number. x0 can be any arbitrary real number.

Sums

In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence.

  • lim n k = 1 n 1 k = {\displaystyle \lim _{n\to \infty }\sum _{k=1}^{n}{\frac {1}{k}}=\infty } . This is known as the harmonic series.
  • lim n ( k = 1 n 1 k log n ) = γ {\displaystyle \lim _{n\to \infty }\left(\sum _{k=1}^{n}{\frac {1}{k}}-\log n\right)=\gamma } . This is the Euler Mascheroni constant.

Notable special limits

  • lim n n n ! n = e {\displaystyle \lim _{n\to \infty }{\frac {n}{\sqrt{n!}}}=e}
  • lim n ( n ! ) 1 / n = {\displaystyle \lim _{n\to \infty }\left(n!\right)^{1/n}=\infty } . This can be proven by considering the inequality e x x n n ! {\displaystyle e^{x}\geq {\frac {x^{n}}{n!}}} at x = n {\displaystyle x=n} .
  • lim n 2 n 2 2 + 2 + + 2 n = π {\displaystyle \lim _{n\to \infty }\,2^{n}\underbrace {\sqrt {2-{\sqrt {2+{\sqrt {2+\dots +{\sqrt {2}}}}}}}} _{n}=\pi } . This can be derived from Viète's formula for π.

Limiting behavior

Asymptotic equivalences

Asymptotic equivalences, f ( x ) g ( x ) {\displaystyle f(x)\sim g(x)} , are true if lim x f ( x ) g ( x ) = 1 {\displaystyle \lim _{x\to \infty }{\frac {f(x)}{g(x)}}=1} . Therefore, they can also be reframed as limits. Some notable asymptotic equivalences include

  • lim x x / ln x π ( x ) = 1 {\displaystyle \lim _{x\to \infty }{\frac {x/\ln x}{\pi (x)}}=1} , due to the prime number theorem, π ( x ) x ln x {\displaystyle \pi (x)\sim {\frac {x}{\ln x}}} , where π(x) is the prime counting function.
  • lim n 2 π n ( n e ) n n ! = 1 {\displaystyle \lim _{n\to \infty }{\frac {{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}}{n!}}=1} , due to Stirling's approximation, n ! 2 π n ( n e ) n {\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}} .

Big O notation

The behaviour of functions described by Big O notation can also be described by limits. For example

  • f ( x ) O ( g ( x ) ) {\displaystyle f(x)\in {\mathcal {O}}(g(x))} if lim sup x | f ( x ) | g ( x ) < {\displaystyle \limsup _{x\to \infty }{\frac {|f(x)|}{g(x)}}<\infty }

References

  1. ^ "Basic Limit Laws". math.oregonstate.edu. Retrieved 2019-07-31.
  2. ^ "Limits Cheat Sheet - Symbolab". www.symbolab.com. Retrieved 2019-07-31.
  3. ^ "Section 2.3: Calculating Limits using the Limit Laws" (PDF).
  4. ^ "Limits and Derivatives Formulas" (PDF).
  5. ^ "Limits Theorems". archives.math.utk.edu. Retrieved 2019-07-31.
  6. ^ "Some Special Limits". www.sosmath.com. Retrieved 2019-07-31.
  7. ^ "SOME IMPORTANT LIMITS - Math Formulas - Mathematics Formulas - Basic Math Formulas". www.pioneermathematics.com. Retrieved 2019-07-31.
  8. ^ "World Web Math: Useful Trig Limits". Massachusetts Institute of Technology. Retrieved 2023-03-20.
  9. "Calculus I - Proof of Trig Limits". Retrieved 2023-03-20.
Calculus
Precalculus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Integrals
Miscellaneous topics
Categories: