Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
G protein-activated inward rectifier potassium channel 4(GIRK-4) is a protein that in humans is encoded by the KCNJ5gene and is a type of G protein-gated ion channel.
Function
Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, is controlled by G-proteins. It may associate with other G-protein-activated potassium channel subunits to form a heterotetrameric pore-forming complex.
"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA (December 2005). "International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels". Pharmacological Reviews. 57 (4): 509–26. doi:10.1124/pr.57.4.11. PMID16382105. S2CID11588492.
Zhuo ML, Huang Y, Liu DP, Liang CC (April 2005). "KATP channel: relation with cell metabolism and role in the cardiovascular system". The International Journal of Biochemistry & Cell Biology. 37 (4): 751–64. doi:10.1016/j.biocel.2004.10.008. PMID15694835.
Tucker SJ, James MR, Adelman JP (July 1995). "Assignment of KATP-1, the cardiac ATP-sensitive potassium channel gene (KCNJ5), to human chromosome 11q24". Genomics. 28 (1): 127–8. doi:10.1006/geno.1995.1121. PMID7590741.
Iizuka M, Kubo Y, Tsunenari I, Pan CX, Akiba I, Kono T (1996). "Functional characterization and localization of a cardiac-type inwardly rectifying K+ channel". Receptors & Channels. 3 (4): 299–315. PMID8834003.
Wischmeyer E, Döring F, Wischmeyer E, Spauschus A, Thomzig A, Veh R, Karschin A (1997). "Subunit interactions in the assembly of neuronal Kir3.0 inwardly rectifying K+ channels". Molecular and Cellular Neurosciences. 9 (3): 194–206. doi:10.1006/mcne.1997.0614. PMID9245502. S2CID8455396.
Schoots O, Wilson JM, Ethier N, Bigras E, Hebert TE, Van Tol HH (December 1999). "Co-expression of human Kir3 subunits can yield channels with different functional properties". Cellular Signalling. 11 (12): 871–83. doi:10.1016/S0898-6568(99)00059-5. PMID10659995.