Misplaced Pages

Berriasian

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Late Berriasian) First age of the early Cretaceous
Berriasian
~143.1 – 137.05 Ma PreꞒ O S D C P T J K Pg N
Chronology
−140 —–−130 —–−120 —–−110 —–−100 —–−90 —–−80 —–−70 —–MesozoicC
Z
JCretaceousP
g
L
J
EarlyLateP
C
TithonianBerriasianValanginianHauterivianBarremianAptianAlbianCenomanianTuronianConiacianSantonianCampanianMaastrichtianDanian    
K-Pg mass
extinction
Subdivision of the Cretaceous according to the ICS, as of 2023.
Vertical axis scale: Millions of years ago
Etymology
Name formalityFormal
Usage information
Celestial bodyEarth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unitAge
Stratigraphic unitStage
Time span formalityFormal
Lower boundary definitionUndefined
Lower boundary definition candidates
Lower boundary GSSP candidate section(s)None
Upper boundary definitionUndefined
Upper boundary definition candidatesFAD of the Calpionellid Calpionellites darderi
Upper boundary GSSP candidate section(s)

In the geological timescale, the Berriasian is an age/stage of the Early/Lower Cretaceous. It is the oldest subdivision in the entire Cretaceous. It has been taken to span the time between 143.1 ±0.6 Ma and 137.05 ± 0.2 (million years ago). The Berriasian succeeds the Tithonian (part of the Jurassic) and precedes the Valanginian.

Stratigraphic definition

The Berriasian Stage was introduced in scientific literature by Henri Coquand in 1869. It is named after the village of Berrias in the Ardèche department of France. The largely non-marine English Purbeck Formation is in part of Berriasian age. The first rocks to be described of this age were the beds of the English Purbeck Formation, named as the Purbeckian by Alexandre Brongniart in 1829 following description by Henry De la Beche, William Buckland, Thomas Webster and William Henry Fitton.

The base of the Berriasian, which is also the base of the Cretaceous System, has traditionally been placed at the first appearance of fossils of the ammonite species Berriasella jacobi. But this is a species that has a stratigraphically problematic and geographically limited distribution. A global reference profile (a GSSP) for the Berriasian has been under active consideration by the Berriasian Working Group (ISCS) of IUGS since 2010. A range of contender GSSP localities has been studied in detail by the Working Group including localities as far apart as Mexico, Ukraine, Tunisia, Iraq and the Russian Far East. Several markers have been employed to refine correlations and to work towards defining a base for the Berriasian Stage. These include calcareous microfossils, such as Nannoconus, calpionellids, ammonites, palynological data and magnetostratigraphy, notably magnetozone M19n. The calibration of these markers, especially Nannoconus steinmannii minor, N. kamptneri minor, and Calpionella alpina, within precisely fixed magnetozones give greater precision in trying to identify the best position for a boundary. In 2016, the Berriasian Working Group voted to adopt Calpionella alpina as the primary marker for the base of the Berriasian Stage. In 2019, a GSSP for the Berriasian was nominated by a vote of the Berriasian Working Group of the Cretaceous Subcommission (ISCS): it is the profile of Tré Maroua in the Vocontian Basin (Hautes Alpes, France). The GSSP was defined at the base of the Alpina Subzone in the middle of magnetozone M19n.2n. This site proposal, of Tré Maroua, was subsequently unsuccessful in a vote of the ISCS (8 votes for and 8 against: 4 not voting); a new working group was formed in 2021.

In the western part of the ocean of Tethys, the Berriasian consists of four ammonite biozones, from top to bottom (latest to earliest):

The top of the Berriasian stage is defined by the base of the Valanginian, which is fixed at the first appearance of calpionellid species Calpionellites darderi. This is just a little below the first appearance of the ammonite species Thurmanniceras pertransiens.

Regional terms used in Russia include "Volgian"(which spans perhaps the latest Kimmeridgian, all the Tithonian and an uncertain amount of the lower Berriasian) and the "Ryazanian" (?upper Berriasian) .

References

Notes

  1. "International Chronostratigraphic Chart" (PDF). International Commission on Stratigraphy. September 2023. Retrieved December 16, 2024.
  2. Cohen, K.M., Finney, S.C., Gibbard, P.L. & Fan, J.-X. (2013; updated) The ICS International Chronostratigraphic Chart. Episodes 36: 199–204.
  3. A Geologic Time Scale 1989 by Walter Brian Harland
  4. Hopson et al. 2009 A stratigraphical framework for the Lower Cretaceous of England, British Geological Survey Research Report, RR/08/03 p7
  5. William A.P. Wimbledon; et al. (May 2020). "The proposal of a GSSP for the Berriasian Stage (Cretaceous System): Part 1". Volumina Jurassica. XVIII (1): 53–106. doi:10.7306/vj.18.5.
  6. "International Commission on Stratigraphy".

Literature

External links

Cretaceous Period
Lower/Early CretaceousUpper/Late Cretaceous
Geological history of Earth
Cenozoic Era
(present–66.0 Ma)
Quaternary (present–2.58 Ma)
Neogene (2.58–23.0 Ma)
Paleogene (23.0–66.0 Ma)
Mesozoic Era
(66.0–252 Ma)
Cretaceous (66.0–145 Ma)
Jurassic (145–201 Ma)
Triassic (201–252 Ma)
Paleozoic Era
(252–539 Ma)
Permian (252–299 Ma)
Carboniferous (299–359 Ma)
Devonian (359–419 Ma)
Silurian (419–444 Ma)
Ordovician (444–485 Ma)
Cambrian (485–539 Ma)
Proterozoic Eon
(539 Ma–2.5 Ga)
Neoproterozoic (539 Ma–1 Ga)
Mesoproterozoic (1–1.6 Ga)
Paleoproterozoic (1.6–2.5 Ga)
Archean Eon (2.5–4 Ga)
Hadean Eon (4–4.6 Ga) 
ka = kiloannum (thousand years ago); Ma = megaannum (million years ago); Ga = gigaannum (billion years ago).
See also: Geologic time scale  • icon Geology portal  • World portal
Categories: