Misplaced Pages

Lomax distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Heavy-tail probability distribution
Lomax
Probability density functionPDF of the Lomax distribution
Cumulative distribution functionLomax distribution CDF plot
Parameters
  • α > 0 {\displaystyle \alpha >0} shape (real)
  • λ > 0 {\displaystyle \lambda >0} scale (real)
Support x 0 {\displaystyle x\geq 0}
PDF α λ [ 1 + x λ ] ( α + 1 ) {\displaystyle {\alpha \over \lambda }\left^{-(\alpha +1)}}
CDF 1 [ 1 + x λ ] α {\displaystyle 1-\left^{-\alpha }}
Quantile λ [ ( 1 p ) 1 α 1 ] {\displaystyle \lambda \left}
Mean λ α 1  for  α > 1 {\displaystyle {\lambda \over {\alpha -1}}{\text{ for }}\alpha >1} ; undefined otherwise
Median λ ( 2 α 1 ) {\displaystyle \lambda \left({\sqrt{2}}-1\right)}
Mode 0
Variance { λ 2 α ( α 1 ) 2 ( α 2 ) α > 2 1 < α 2 Undefined otherwise {\displaystyle {\begin{cases}{{\lambda ^{2}\alpha } \over {(\alpha -1)^{2}(\alpha -2)}}&\alpha >2\\\infty &1<\alpha \leq 2\\{\text{Undefined}}&{\text{otherwise}}\end{cases}}}
Skewness 2 ( 1 + α ) α 3 α 2 α  for  α > 3 {\displaystyle {\frac {2(1+\alpha )}{\alpha -3}}\,{\sqrt {\frac {\alpha -2}{\alpha }}}{\text{ for }}\alpha >3\,}
Excess kurtosis 6 ( α 3 + α 2 6 α 2 ) α ( α 3 ) ( α 4 )  for  α > 4 {\displaystyle {\frac {6(\alpha ^{3}+\alpha ^{2}-6\alpha -2)}{\alpha (\alpha -3)(\alpha -4)}}{\text{ for }}\alpha >4\,}
Entropy 1 + 1 α log α β {\displaystyle 1+{\frac {1}{\alpha }}-\log {\frac {\alpha }{\beta }}}
MGF α e λ t ( λ t ) α Γ ( α , λ t ) {\displaystyle \alpha e^{-\lambda t}(-\lambda t)^{\alpha }\Gamma (-\alpha ,-\lambda t)\,}
CF α e i λ t ( i λ t ) α Γ ( α , i λ t ) {\displaystyle \alpha e^{-i\lambda t}(-i\lambda t)^{\alpha }\Gamma (-\alpha ,-i\lambda t)\,}

The Lomax distribution, conditionally also called the Pareto Type II distribution, is a heavy-tail probability distribution used in business, economics, actuarial science, queueing theory and Internet traffic modeling. It is named after K. S. Lomax. It is essentially a Pareto distribution that has been shifted so that its support begins at zero.

Characterization

Probability density function

The probability density function (pdf) for the Lomax distribution is given by

p ( x ) = α λ [ 1 + x λ ] ( α + 1 ) , x 0 , {\displaystyle p(x)={\alpha \over \lambda }\left^{-(\alpha +1)},\qquad x\geq 0,}

with shape parameter α > 0 {\displaystyle \alpha >0} and scale parameter λ > 0 {\displaystyle \lambda >0} . The density can be rewritten in such a way that more clearly shows the relation to the Pareto Type I distribution. That is:

p ( x ) = α λ α ( x + λ ) α + 1 {\displaystyle p(x)={{\alpha \lambda ^{\alpha }} \over {(x+\lambda )^{\alpha +1}}}} .

Non-central moments

The ν {\displaystyle \nu } th non-central moment E [ X ν ] {\displaystyle E\left} exists only if the shape parameter α {\displaystyle \alpha } strictly exceeds ν {\displaystyle \nu } , when the moment has the value

E ( X ν ) = λ ν Γ ( α ν ) Γ ( 1 + ν ) Γ ( α ) {\displaystyle E\left(X^{\nu }\right)={\frac {\lambda ^{\nu }\Gamma (\alpha -\nu )\Gamma (1+\nu )}{\Gamma (\alpha )}}}

Related distributions

Relation to the Pareto distribution

The Lomax distribution is a Pareto Type I distribution shifted so that its support begins at zero. Specifically:

If  Y Pareto ( x m = λ , α ) ,  then  Y x m Lomax ( α , λ ) . {\displaystyle {\text{If }}Y\sim {\mbox{Pareto}}(x_{m}=\lambda ,\alpha ),{\text{ then }}Y-x_{m}\sim {\mbox{Lomax}}(\alpha ,\lambda ).}

The Lomax distribution is a Pareto Type II distribution with xm=λ and μ=0:

If  X Lomax ( α , λ )  then  X P(II) ( x m = λ , α , μ = 0 ) . {\displaystyle {\text{If }}X\sim {\mbox{Lomax}}(\alpha ,\lambda ){\text{ then }}X\sim {\text{P(II)}}\left(x_{m}=\lambda ,\alpha ,\mu =0\right).}

Relation to the generalized Pareto distribution

The Lomax distribution is a special case of the generalized Pareto distribution. Specifically:

μ = 0 ,   ξ = 1 α ,   σ = λ α . {\displaystyle \mu =0,~\xi ={1 \over \alpha },~\sigma ={\lambda \over \alpha }.}

Relation to the beta prime distribution

The Lomax distribution with scale parameter λ = 1 is a special case of the beta prime distribution. If X has a Lomax distribution, then X λ β ( 1 , α ) {\displaystyle {\frac {X}{\lambda }}\sim \beta ^{\prime }(1,\alpha )} .

Relation to the F distribution

The Lomax distribution with shape parameter α = 1 and scale parameter λ = 1 has density f ( x ) = 1 ( 1 + x ) 2 {\displaystyle f(x)={\frac {1}{(1+x)^{2}}}} , the same distribution as an F(2,2) distribution. This is the distribution of the ratio of two independent and identically distributed random variables with exponential distributions.

Relation to the q-exponential distribution

The Lomax distribution is a special case of the q-exponential distribution. The q-exponential extends this distribution to support on a bounded interval. The Lomax parameters are given by:

α = 2 q q 1 ,   λ = 1 λ q ( q 1 ) . {\displaystyle \alpha ={{2-q} \over {q-1}},~\lambda ={1 \over \lambda _{q}(q-1)}.}

Relation to the logistic distribution

The logarithm of a Lomax(shape = 1.0, scale = λ)-distributed variable follows a logistic distribution with location log(λ) and scale 1.0.

Gamma-exponential (scale-) mixture connection

The Lomax distribution arises as a mixture of exponential distributions where the mixing distribution of the rate is a gamma distribution. If λ|k,θ ~ Gamma(shape = k, scale = θ) and X|λ ~ Exponential(rate = λ) then the marginal distribution of X|k,θ is Lomax(shape = k, scale = 1/θ). Since the rate parameter may equivalently be reparameterized to a scale parameter, the Lomax distribution constitutes a scale mixture of exponentials (with the exponential scale parameter following an inverse-gamma distribution).

See also

References

  1. Lomax, K. S. (1954) "Business Failures; Another example of the analysis of failure data". Journal of the American Statistical Association, 49, 847–852. JSTOR 2281544
  2. Johnson, N. L.; Kotz, S.; Balakrishnan, N. (1994). "20 Pareto distributions". Continuous univariate distributions. Vol. 1 (2nd ed.). New York: Wiley. p. 573.
  3. J. Chen, J., Addie, R. G., Zukerman. M., Neame, T. D. (2015) "Performance Evaluation of a Queue Fed by a Poisson Lomax Burst Process", IEEE Communications Letters, 19, 3, 367-370.
  4. Van Hauwermeiren M and Vose D (2009). A Compendium of Distributions . Vose Software, Ghent, Belgium. Available at www.vosesoftware.com.
  5. Kleiber, Christian; Kotz, Samuel (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley Series in Probability and Statistics, vol. 470, John Wiley & Sons, p. 60, ISBN 9780471457169.
Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Categories: