Misplaced Pages

Matrix gamma distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Matrix gamma
Notation M G p ( α , β , Σ ) {\displaystyle {\rm {MG}}_{p}(\alpha ,\beta ,{\boldsymbol {\Sigma }})}
Parameters

α > p 1 2 {\displaystyle \alpha >{\frac {p-1}{2}}} shape parameter (real)
β > 0 {\displaystyle \beta >0} scale parameter

Σ {\displaystyle {\boldsymbol {\Sigma }}} scale (positive-definite real p × p {\displaystyle p\times p} matrix)
Support X {\displaystyle \mathbf {X} } positive-definite real p × p {\displaystyle p\times p} matrix
PDF

| Σ | α β p α Γ p ( α ) | X | α p + 1 2 exp ( t r ( 1 β Σ 1 X ) ) {\displaystyle {\frac {|{\boldsymbol {\Sigma }}|^{-\alpha }}{\beta ^{p\alpha }\,\Gamma _{p}(\alpha )}}|\mathbf {X} |^{\alpha -{\frac {p+1}{2}}}\exp \left({\rm {tr}}\left(-{\frac {1}{\beta }}{\boldsymbol {\Sigma }}^{-1}\mathbf {X} \right)\right)}

In statistics, a matrix gamma distribution is a generalization of the gamma distribution to positive-definite matrices. It is effectively a different parametrization of the Wishart distribution, and is used similarly, e.g. as the conjugate prior of the precision matrix of a multivariate normal distribution and matrix normal distribution. The compound distribution resulting from compounding a matrix normal with a matrix gamma prior over the precision matrix is a generalized matrix t-distribution.

A matrix gamma distributions is identical to a Wishart distribution with β Σ = 2 V , α = n 2 . {\displaystyle \beta {\boldsymbol {\Sigma }}=2V,\alpha ={\frac {n}{2}}.}

Notice that the parameters β {\displaystyle \beta } and Σ {\displaystyle {\boldsymbol {\Sigma }}} are not identified; the density depends on these two parameters through the product β Σ {\displaystyle \beta {\boldsymbol {\Sigma }}} .

See also

Notes

  1. ^ Iranmanesh, Anis, M. Arashib and S. M. M. Tabatabaey (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics, 5:2, pp. 33–43.

References

  • Gupta, A. K.; Nagar, D. K. (1999) Matrix Variate Distributions, Chapman and Hall/CRC ISBN 978-1584880462
Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families


Stub icon

This article about matrices is a stub. You can help Misplaced Pages by expanding it.

Categories: