Misplaced Pages

Wrapped normal distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Wrapped Normal
Probability density functionPlot of the von Mises PMF
The support is chosen to be with μ=0
Cumulative distribution functionPlot of the von Mises CMF
The support is chosen to be with μ=0
Parameters μ {\displaystyle \mu } real
σ > 0 {\displaystyle \sigma >0}
Support θ {\displaystyle \theta \in } any interval of length 2π
PDF 1 2 π ϑ ( θ μ 2 π , i σ 2 2 π ) {\displaystyle {\frac {1}{2\pi }}\vartheta \left({\frac {\theta -\mu }{2\pi }},{\frac {i\sigma ^{2}}{2\pi }}\right)}
Mean μ {\displaystyle \mu } if support is on interval μ ± π {\displaystyle \mu \pm \pi }
Median μ {\displaystyle \mu } if support is on interval μ ± π {\displaystyle \mu \pm \pi }
Mode μ {\displaystyle \mu }
Variance 1 e σ 2 / 2 {\displaystyle 1-e^{-\sigma ^{2}/2}} (circular)
Entropy (see text)
CF e σ 2 n 2 / 2 + i n μ {\displaystyle e^{-\sigma ^{2}n^{2}/2+in\mu }}

In probability theory and directional statistics, a wrapped normal distribution is a wrapped probability distribution that results from the "wrapping" of the normal distribution around the unit circle. It finds application in the theory of Brownian motion and is a solution to the heat equation for periodic boundary conditions. It is closely approximated by the von Mises distribution, which, due to its mathematical simplicity and tractability, is the most commonly used distribution in directional statistics.

Definition

The probability density function of the wrapped normal distribution is

f W N ( θ ; μ , σ ) = 1 σ 2 π k = exp [ ( θ μ + 2 π k ) 2 2 σ 2 ] , {\displaystyle f_{WN}(\theta ;\mu ,\sigma )={\frac {1}{\sigma {\sqrt {2\pi }}}}\sum _{k=-\infty }^{\infty }\exp \left,}

where μ and σ are the mean and standard deviation of the unwrapped distribution, respectively. Expressing the above density function in terms of the characteristic function of the normal distribution yields:

f W N ( θ ; μ , σ ) = 1 2 π n = e σ 2 n 2 / 2 + i n ( θ μ ) = 1 2 π ϑ ( θ μ 2 π , i σ 2 2 π ) , {\displaystyle f_{WN}(\theta ;\mu ,\sigma )={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }e^{-\sigma ^{2}n^{2}/2+in(\theta -\mu )}={\frac {1}{2\pi }}\vartheta \left({\frac {\theta -\mu }{2\pi }},{\frac {i\sigma ^{2}}{2\pi }}\right),}

where ϑ ( θ , τ ) {\displaystyle \vartheta (\theta ,\tau )} is the Jacobi theta function, given by

ϑ ( θ , τ ) = n = ( w 2 ) n q n 2  where  w e i π θ {\displaystyle \vartheta (\theta ,\tau )=\sum _{n=-\infty }^{\infty }(w^{2})^{n}q^{n^{2}}{\text{ where }}w\equiv e^{i\pi \theta }} and q e i π τ . {\displaystyle q\equiv e^{i\pi \tau }.}

The wrapped normal distribution may also be expressed in terms of the Jacobi triple product:

f W N ( θ ; μ , σ ) = 1 2 π n = 1 ( 1 q n ) ( 1 + q n 1 / 2 z ) ( 1 + q n 1 / 2 / z ) . {\displaystyle f_{WN}(\theta ;\mu ,\sigma )={\frac {1}{2\pi }}\prod _{n=1}^{\infty }(1-q^{n})(1+q^{n-1/2}z)(1+q^{n-1/2}/z).}

where z = e i ( θ μ ) {\displaystyle z=e^{i(\theta -\mu )}\,} and q = e σ 2 . {\displaystyle q=e^{-\sigma ^{2}}.}

Moments

In terms of the circular variable z = e i θ {\displaystyle z=e^{i\theta }} the circular moments of the wrapped normal distribution are the characteristic function of the normal distribution evaluated at integer arguments:

z n = Γ e i n θ f W N ( θ ; μ , σ ) d θ = e i n μ n 2 σ 2 / 2 . {\displaystyle \langle z^{n}\rangle =\int _{\Gamma }e^{in\theta }\,f_{WN}(\theta ;\mu ,\sigma )\,d\theta =e^{in\mu -n^{2}\sigma ^{2}/2}.}

where Γ {\displaystyle \Gamma \,} is some interval of length 2 π {\displaystyle 2\pi } . The first moment is then the average value of z, also known as the mean resultant, or mean resultant vector:

z = e i μ σ 2 / 2 {\displaystyle \langle z\rangle =e^{i\mu -\sigma ^{2}/2}}

The mean angle is

θ μ = A r g z = μ {\displaystyle \theta _{\mu }=\mathrm {Arg} \langle z\rangle =\mu }

and the length of the mean resultant is

R = | z | = e σ 2 / 2 {\displaystyle R=|\langle z\rangle |=e^{-\sigma ^{2}/2}}

The circular standard deviation, which is a useful measure of dispersion for the wrapped normal distribution and its close relative, the von Mises distribution is given by:

s = ln ( R 2 ) 1 / 2 = σ {\displaystyle s=\ln(R^{-2})^{1/2}=\sigma }

Estimation of parameters

A series of N measurements zn = e drawn from a wrapped normal distribution may be used to estimate certain parameters of the distribution. The average of the series z is defined as

z ¯ = 1 N n = 1 N z n {\displaystyle {\overline {z}}={\frac {1}{N}}\sum _{n=1}^{N}z_{n}}

and its expectation value will be just the first moment:

z ¯ = e i μ σ 2 / 2 . {\displaystyle \langle {\overline {z}}\rangle =e^{i\mu -\sigma ^{2}/2}.\,}

In other words, z is an unbiased estimator of the first moment. If we assume that the mean μ lies in the interval [−ππ), then Arg z will be a (biased) estimator of the mean μ.

Viewing the zn as a set of vectors in the complex plane, the R statistic is the square of the length of the averaged vector:

R ¯ 2 = z ¯ z ¯ = ( 1 N n = 1 N cos θ n ) 2 + ( 1 N n = 1 N sin θ n ) 2 {\displaystyle {\overline {R}}^{2}={\overline {z}}\,{\overline {z^{*}}}=\left({\frac {1}{N}}\sum _{n=1}^{N}\cos \theta _{n}\right)^{2}+\left({\frac {1}{N}}\sum _{n=1}^{N}\sin \theta _{n}\right)^{2}\,}

and its expected value is:

R ¯ 2 = 1 N + N 1 N e σ 2 {\displaystyle \left\langle {\overline {R}}^{2}\right\rangle ={\frac {1}{N}}+{\frac {N-1}{N}}\,e^{-\sigma ^{2}}\,}

In other words, the statistic

R e 2 = N N 1 ( R ¯ 2 1 N ) {\displaystyle R_{e}^{2}={\frac {N}{N-1}}\left({\overline {R}}^{2}-{\frac {1}{N}}\right)}

will be an unbiased estimator of e, and ln(1/Re) will be a (biased) estimator of σ

Entropy

The information entropy of the wrapped normal distribution is defined as:

H = Γ f W N ( θ ; μ , σ ) ln ( f W N ( θ ; μ , σ ) ) d θ {\displaystyle H=-\int _{\Gamma }f_{WN}(\theta ;\mu ,\sigma )\,\ln(f_{WN}(\theta ;\mu ,\sigma ))\,d\theta }

where Γ {\displaystyle \Gamma } is any interval of length 2 π {\displaystyle 2\pi } . Defining z = e i ( θ μ ) {\displaystyle z=e^{i(\theta -\mu )}} and q = e σ 2 {\displaystyle q=e^{-\sigma ^{2}}} , the Jacobi triple product representation for the wrapped normal is:

f W N ( θ ; μ , σ ) = ϕ ( q ) 2 π m = 1 ( 1 + q m 1 / 2 z ) ( 1 + q m 1 / 2 z 1 ) {\displaystyle f_{WN}(\theta ;\mu ,\sigma )={\frac {\phi (q)}{2\pi }}\prod _{m=1}^{\infty }(1+q^{m-1/2}z)(1+q^{m-1/2}z^{-1})}

where ϕ ( q ) {\displaystyle \phi (q)\,} is the Euler function. The logarithm of the density of the wrapped normal distribution may be written:

ln ( f W N ( θ ; μ , σ ) ) = ln ( ϕ ( q ) 2 π ) + m = 1 ln ( 1 + q m 1 / 2 z ) + m = 1 ln ( 1 + q m 1 / 2 z 1 ) {\displaystyle \ln(f_{WN}(\theta ;\mu ,\sigma ))=\ln \left({\frac {\phi (q)}{2\pi }}\right)+\sum _{m=1}^{\infty }\ln(1+q^{m-1/2}z)+\sum _{m=1}^{\infty }\ln(1+q^{m-1/2}z^{-1})}

Using the series expansion for the logarithm:

ln ( 1 + x ) = k = 1 ( 1 ) k k x k {\displaystyle \ln(1+x)=-\sum _{k=1}^{\infty }{\frac {(-1)^{k}}{k}}\,x^{k}}

the logarithmic sums may be written as:

m = 1 ln ( 1 + q m 1 / 2 z ± 1 ) = m = 1 k = 1 ( 1 ) k k q m k k / 2 z ± k = k = 1 ( 1 ) k k q k / 2 1 q k z ± k {\displaystyle \sum _{m=1}^{\infty }\ln(1+q^{m-1/2}z^{\pm 1})=-\sum _{m=1}^{\infty }\sum _{k=1}^{\infty }{\frac {(-1)^{k}}{k}}\,q^{mk-k/2}z^{\pm k}=-\sum _{k=1}^{\infty }{\frac {(-1)^{k}}{k}}\,{\frac {q^{k/2}}{1-q^{k}}}\,z^{\pm k}}

so that the logarithm of density of the wrapped normal distribution may be written as:

ln ( f W N ( θ ; μ , σ ) ) = ln ( ϕ ( q ) 2 π ) k = 1 ( 1 ) k k q k / 2 1 q k ( z k + z k ) {\displaystyle \ln(f_{WN}(\theta ;\mu ,\sigma ))=\ln \left({\frac {\phi (q)}{2\pi }}\right)-\sum _{k=1}^{\infty }{\frac {(-1)^{k}}{k}}{\frac {q^{k/2}}{1-q^{k}}}\,(z^{k}+z^{-k})}

which is essentially a Fourier series in θ {\displaystyle \theta \,} . Using the characteristic function representation for the wrapped normal distribution in the left side of the integral:

f W N ( θ ; μ , σ ) = 1 2 π n = q n 2 / 2 z n {\displaystyle f_{WN}(\theta ;\mu ,\sigma )={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }q^{n^{2}/2}\,z^{n}}

the entropy may be written:

H = ln ( ϕ ( q ) 2 π ) + 1 2 π Γ ( n = k = 1 ( 1 ) k k q ( n 2 + k ) / 2 1 q k ( z n + k + z n k ) ) d θ {\displaystyle H=-\ln \left({\frac {\phi (q)}{2\pi }}\right)+{\frac {1}{2\pi }}\int _{\Gamma }\left(\sum _{n=-\infty }^{\infty }\sum _{k=1}^{\infty }{\frac {(-1)^{k}}{k}}{\frac {q^{(n^{2}+k)/2}}{1-q^{k}}}\left(z^{n+k}+z^{n-k}\right)\right)\,d\theta }

which may be integrated to yield:

H = ln ( ϕ ( q ) 2 π ) + 2 k = 1 ( 1 ) k k q ( k 2 + k ) / 2 1 q k {\displaystyle H=-\ln \left({\frac {\phi (q)}{2\pi }}\right)+2\sum _{k=1}^{\infty }{\frac {(-1)^{k}}{k}}\,{\frac {q^{(k^{2}+k)/2}}{1-q^{k}}}}

See also

References

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (June 2014) (Learn how and when to remove this message)
  1. Collett, D.; Lewis, T. (1981). "Discriminating Between the Von Mises and Wrapped Normal Distributions". Australian Journal of Statistics. 23 (1): 73–79. doi:10.1111/j.1467-842X.1981.tb00763.x.
  2. ^ Mardia, Kantilal; Jupp, Peter E. (1999). Directional Statistics. Wiley. ISBN 978-0-471-95333-3.
  3. Whittaker, E. T.; Watson, G. N. (2009). A Course of Modern Analysis. Book Jungle. ISBN 978-1-4385-2815-1.

External links

Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Categories: