Misplaced Pages

U-quadratic distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
U-quadratic
Probability density functionPlot of the U-Quadratic Density Function
Parameters a :   a ( , ) {\displaystyle a:~a\in (-\infty ,\infty )}
b :   b ( a , ) {\displaystyle b:~b\in (a,\infty )}
or
α :   α ( 0 , ) {\displaystyle \alpha :~\alpha \in (0,\infty )}
β :   β ( , ) , {\displaystyle \beta :~\beta \in (-\infty ,\infty ),}
Support x [ a , b ] {\displaystyle x\in \!}
PDF α ( x β ) 2 {\displaystyle \alpha \left(x-\beta \right)^{2}}
CDF α 3 ( ( x β ) 3 + ( β a ) 3 ) {\displaystyle {\alpha \over 3}\left((x-\beta )^{3}+(\beta -a)^{3}\right)}
Mean a + b 2 {\displaystyle {a+b \over 2}}
Median a + b 2 {\displaystyle {a+b \over 2}}
Mode a  and  b {\displaystyle a{\text{ and }}b}
Variance 3 20 ( b a ) 2 {\displaystyle {3 \over 20}(b-a)^{2}}
Skewness 0 {\displaystyle 0}
Excess kurtosis 3 112 ( b a ) 4 {\displaystyle {3 \over 112}(b-a)^{4}}
Entropy TBD
MGF See text
CF See text

In probability theory and statistics, the U-quadratic distribution is a continuous probability distribution defined by a unique convex quadratic function with lower limit a and upper limit b.

f ( x | a , b , α , β ) = α ( x β ) 2 , for  x [ a , b ] . {\displaystyle f(x|a,b,\alpha ,\beta )=\alpha \left(x-\beta \right)^{2},\quad {\text{for }}x\in .}

Parameter relations

This distribution has effectively only two parameters a, b, as the other two are explicit functions of the support defined by the former two parameters:

β = b + a 2 {\displaystyle \beta ={b+a \over 2}}

(gravitational balance center, offset), and

α = 12 ( b a ) 3 {\displaystyle \alpha ={12 \over \left(b-a\right)^{3}}}

(vertical scale).

Related distributions

One can introduce a vertically inverted ( {\displaystyle \cap } )-quadratic distribution in analogous fashion. That inverted distribution is also closely related to the Epanechnikov distribution.

Applications

This distribution is a useful model for symmetric bimodal processes. Other continuous distributions allow more flexibility, in terms of relaxing the symmetry and the quadratic shape of the density function, which are enforced in the U-quadratic distribution – e.g., beta distribution and gamma distribution.

Moment generating function

M X ( t ) = 3 ( e a t ( 4 + ( a 2 + 2 a ( 2 + b ) + b 2 ) t ) e b t ( 4 + ( 4 b + ( a + b ) 2 ) t ) ) ( a b ) 3 t 2 {\displaystyle M_{X}(t)={-3\left(e^{at}(4+(a^{2}+2a(-2+b)+b^{2})t)-e^{bt}(4+(-4b+(a+b)^{2})t)\right) \over (a-b)^{3}t^{2}}}

Characteristic function

ϕ X ( t ) = 3 i ( e i a t e i b t ( 4 i ( 4 b + ( a + b ) 2 ) t ) ) ( a b ) 3 t 2 {\displaystyle \phi _{X}(t)={3i\left(e^{iate^{ibt}}(4i-(-4b+(a+b)^{2})t)\right) \over (a-b)^{3}t^{2}}}


Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Category: