In quantum information theory and quantum optics, the Schrödinger–HJW theorem is a result about the realization of a mixed state of a quantum system as an ensemble of pure quantum states and the relation between the corresponding purifications of the density operators. The theorem is named after physicists and mathematicians Erwin Schrödinger, Lane P. Hughston, Richard Jozsa and William Wootters. The result was also found independently (albeit partially) by Nicolas Gisin, and by Nicolas Hadjisavvas building upon work by Ed Jaynes, while a significant part of it was likewise independently discovered by N. David Mermin. Thanks to its complicated history, it is also known by various other names such as the GHJW theorem, the HJW theorem, and the purification theorem.
Purification of a mixed quantum state
Let be a finite-dimensional complex Hilbert space, and consider a generic (possibly mixed) quantum state defined on and admitting a decomposition of the form for a collection of (not necessarily mutually orthogonal) states and coefficients such that . Note that any quantum state can be written in such a way for some and .
Any such can be purified, that is, represented as the partial trace of a pure state defined in a larger Hilbert space. More precisely, it is always possible to find a (finite-dimensional) Hilbert space and a pure state such that . Furthermore, the states satisfying this are all and only those of the form for some orthonormal basis . The state is then referred to as the "purification of ". Since the auxiliary space and the basis can be chosen arbitrarily, the purification of a mixed state is not unique; in fact, there are infinitely many purifications of a given mixed state. Because all of them admit a decomposition in the form given above, given any pair of purifications , there is always some unitary operation such that
Theorem
Consider a mixed quantum state with two different realizations as ensemble of pure states as and . Here both and are not assumed to be mutually orthogonal. There will be two corresponding purifications of the mixed state reading as follows:
- Purification 1: ;
- Purification 2: .
The sets and are two collections of orthonormal bases of the respective auxiliary spaces. These two purifications only differ by a unitary transformation acting on the auxiliary space, namely, there exists a unitary matrix such that . Therefore, , which means that we can realize the different ensembles of a mixed state just by making different measurements on the purifying system.
References
- Schrödinger, Erwin (1936). "Probability relations between separated systems". Proceedings of the Cambridge Philosophical Society. 32 (3): 446–452. Bibcode:1936PCPS...32..446S. doi:10.1017/S0305004100019137.
- Hughston, Lane P.; Jozsa, Richard; Wootters, William K. (November 1993). "A complete classification of quantum ensembles having a given density matrix". Physics Letters A. 183 (1): 14–18. Bibcode:1993PhLA..183...14H. doi:10.1016/0375-9601(93)90880-9. ISSN 0375-9601.
- Gisin, N. (1989). “Stochastic quantum dynamics and relativity”, Helvetica Physica Acta 62, 363–371.
- Hadjisavvas, Nicolas (1981). "Properties of mixtures on non-orthogonal states". Letters in Mathematical Physics. 5 (4): 327–332. Bibcode:1981LMaPh...5..327H. doi:10.1007/BF00401481.
- Jaynes, E. T. (1957). "Information theory and statistical mechanics. II". Physical Review. 108 (2): 171–190. Bibcode:1957PhRv..108..171J. doi:10.1103/PhysRev.108.171.
- Fuchs, Christopher A. (2011). Coming of Age with Quantum Information: Notes on a Paulian Idea. Cambridge: Cambridge University Press. ISBN 978-0-521-19926-1. OCLC 535491156.
- Mermin, N. David (1999). "What Do These Correlations Know about Reality? Nonlocality and the Absurd". Foundations of Physics. 29 (4): 571–587. arXiv:quant-ph/9807055. Bibcode:1998quant.ph..7055M. doi:10.1023/A:1018864225930.
- Nielsen, Michael A.; Chuang, Isaac L., "The Schmidt decomposition and purifications", Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, pp. 110–111.
- Watrous, John (2018). The Theory of Quantum Information. Cambridge: Cambridge University Press. doi:10.1017/9781316848142. ISBN 978-1-107-18056-7.
- Kirkpatrick, K. A. (February 2006). "The Schrödinger-HJW Theorem". Foundations of Physics Letters. 19 (1): 95–102. arXiv:quant-ph/0305068. Bibcode:2006FoPhL..19...95K. doi:10.1007/s10702-006-1852-1. ISSN 0894-9875.
Quantum information science | |||||||||
---|---|---|---|---|---|---|---|---|---|
General | |||||||||
Theorems | |||||||||
Quantum communication |
| ||||||||
Quantum algorithms | |||||||||
Quantum complexity theory | |||||||||
Quantum processor benchmarks | |||||||||
Quantum computing models | |||||||||
Quantum error correction | |||||||||
Physical implementations |
| ||||||||
Quantum programming | |||||||||