Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
(Redirected from Sierpinski problem)
Odd number with specific properties
The number 78557 was proved to be a Sierpiński number by John Selfridge in 1962, who showed that all numbers of the form 78557⋅2 + 1 have a factor in the covering set {3, 5, 7, 13, 19, 37, 73}. For another known Sierpiński number, 271129, the covering set is {3, 5, 7, 13, 17, 241}. Most currently known Sierpiński numbers possess similar covering sets.
However, in 1995 A. S. Izotov showed that some fourth powers could be proved to be Sierpiński numbers without establishing a covering set for all values of n. His proof depends on the aurifeuillean factorizationt⋅2 + 1 = (t⋅2 + t⋅2 + 1)⋅(t⋅2 − t⋅2 + 1). This establishes that all n ≡ 2 (mod 4) give rise to a composite, and so it remains to eliminate only n ≡ 0, 1, 3 (mod 4) using a covering set.
The Sierpiński problem asks for the value of the smallest Sierpiński number. In private correspondence with Paul Erdős, Selfridge conjectured that 78,557 was the smallest Sierpiński number. No smaller Sierpiński numbers have been discovered, and it is now believed that 78,557 is the smallest number.
To show that 78,557 really is the smallest Sierpiński number, one must show that all the odd numbers smaller than 78,557 are not Sierpiński numbers. That is, for every odd k below 78,557, there needs to exist a positive integer n such that k2 + 1 is prime. The distributed volunteer computing project PrimeGrid is attempting to eliminate all the remaining values of k:
In 1976, Nathan Mendelsohn determined that the second provable Sierpiński number is the prime k = 271129. The prime Sierpiński problem asks for the value of the smallest prime Sierpiński number, and there is an ongoing "Prime Sierpiński search" which tries to prove that 271129 is the first Sierpiński number which is also a prime.
Suppose that both preceding Sierpiński problems had finally been solved, showing that 78557 is the smallest Sierpiński number and that 271129 is the smallest prime Sierpiński number. This still leaves unsolved the question of the second Sierpinski number; there could exist a composite Sierpiński number k such that . An ongoing search is trying to prove that 271129 is the second Sierpiński number, by testing all k values between 78557 and 271129, prime or not.
Simultaneously Sierpiński and Riesel
A number that is both Sierpiński and Riesel is a Brier number (after Éric Brier). The smallest five known examples are 3316923598096294713661, 10439679896374780276373, 11615103277955704975673, 12607110588854501953787, and 17855036657007596110949 (A076335).