Process in mathematical probability theory
In the mathematical theory of probability , Brownian meander
W
+
=
{
W
t
+
,
t
∈
[
0
,
1
]
}
{\displaystyle W^{+}=\{W_{t}^{+},t\in \}}
is a continuous non-homogeneous Markov process defined as follows:
Let
W
=
{
W
t
,
t
≥
0
}
{\displaystyle W=\{W_{t},t\geq 0\}}
be a standard one-dimensional Brownian motion , and
τ
:=
sup
{
t
∈
[
0
,
1
]
:
W
t
=
0
}
{\displaystyle \tau :=\sup\{t\in :W_{t}=0\}}
, i.e. the last time before t = 1 when
W
{\displaystyle W}
visits
{
0
}
{\displaystyle \{0\}}
. Then the Brownian meander is defined by the following:
W
t
+
:=
1
1
−
τ
|
W
τ
+
t
(
1
−
τ
)
|
,
t
∈
[
0
,
1
]
.
{\displaystyle W_{t}^{+}:={\frac {1}{\sqrt {1-\tau }}}|W_{\tau +t(1-\tau )}|,\quad t\in .}
In words, let
τ
{\displaystyle \tau }
be the last time before 1 that a standard Brownian motion visits
{
0
}
{\displaystyle \{0\}}
. (
τ
<
1
{\displaystyle \tau <1}
almost surely.) We snip off and discard the trajectory of Brownian motion before
τ
{\displaystyle \tau }
, and scale the remaining part so that it spans a time interval of length 1. The scaling factor for the spatial axis must be square root of the scaling factor for the time axis. The process resulting from this snip-and-scale procedure is a Brownian meander. As the name suggests, it is a piece of Brownian motion that spends all its time away from its starting point
{
0
}
{\displaystyle \{0\}}
.
The transition density
p
(
s
,
x
,
t
,
y
)
d
y
:=
P
(
W
t
+
∈
d
y
∣
W
s
+
=
x
)
{\displaystyle p(s,x,t,y)\,dy:=P(W_{t}^{+}\in dy\mid W_{s}^{+}=x)}
of Brownian meander is described as follows:
For
0
<
s
<
t
≤
1
{\displaystyle 0<s<t\leq 1}
and
x
,
y
>
0
{\displaystyle x,y>0}
, and writing
φ
t
(
x
)
:=
exp
{
−
x
2
/
(
2
t
)
}
2
π
t
and
Φ
t
(
x
,
y
)
:=
∫
x
y
φ
t
(
w
)
d
w
,
{\displaystyle \varphi _{t}(x):={\frac {\exp\{-x^{2}/(2t)\}}{\sqrt {2\pi t}}}\quad {\text{and}}\quad \Phi _{t}(x,y):=\int _{x}^{y}\varphi _{t}(w)\,dw,}
we have
p
(
s
,
x
,
t
,
y
)
d
y
:=
P
(
W
t
+
∈
d
y
∣
W
s
+
=
x
)
=
(
φ
t
−
s
(
y
−
x
)
−
φ
t
−
s
(
y
+
x
)
)
Φ
1
−
t
(
0
,
y
)
Φ
1
−
s
(
0
,
x
)
d
y
{\displaystyle {\begin{aligned}p(s,x,t,y)\,dy:={}&P(W_{t}^{+}\in dy\mid W_{s}^{+}=x)\\={}&{\bigl (}\varphi _{t-s}(y-x)-\varphi _{t-s}(y+x){\bigl )}{\frac {\Phi _{1-t}(0,y)}{\Phi _{1-s}(0,x)}}\,dy\end{aligned}}}
and
p
(
0
,
0
,
t
,
y
)
d
y
:=
P
(
W
t
+
∈
d
y
)
=
2
2
π
y
t
φ
t
(
y
)
Φ
1
−
t
(
0
,
y
)
d
y
.
{\displaystyle p(0,0,t,y)\,dy:=P(W_{t}^{+}\in dy)=2{\sqrt {2\pi }}{\frac {y}{t}}\varphi _{t}(y)\Phi _{1-t}(0,y)\,dy.}
In particular,
P
(
W
1
+
∈
d
y
)
=
y
exp
{
−
y
2
/
2
}
d
y
,
y
>
0
,
{\displaystyle P(W_{1}^{+}\in dy)=y\exp\{-y^{2}/2\}\,dy,\quad y>0,}
i.e.
W
1
+
{\displaystyle W_{1}^{+}}
has the Rayleigh distribution with parameter 1, the same distribution as
2
e
{\displaystyle {\sqrt {2\mathbf {e} }}}
, where
e
{\displaystyle \mathbf {e} }
is an exponential random variable with parameter 1.
References
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑