Random process in probability theory
A compound Poisson process is a continuous-time stochastic process with jumps. The jumps arrive randomly according to a Poisson process and the size of the jumps is also random, with a specified probability distribution. To be precise, a compound Poisson process, parameterised by a rate
λ
>
0
{\displaystyle \lambda >0}
and jump size distribution G , is a process
{
Y
(
t
)
:
t
≥
0
}
{\displaystyle \{\,Y(t):t\geq 0\,\}}
given by
Y
(
t
)
=
∑
i
=
1
N
(
t
)
D
i
{\displaystyle Y(t)=\sum _{i=1}^{N(t)}D_{i}}
where,
{
N
(
t
)
:
t
≥
0
}
{\displaystyle \{\,N(t):t\geq 0\,\}}
is the counting variable of a Poisson process with rate
λ
{\displaystyle \lambda }
, and
{
D
i
:
i
≥
1
}
{\displaystyle \{\,D_{i}:i\geq 1\,\}}
are independent and identically distributed random variables, with distribution function G , which are also independent of
{
N
(
t
)
:
t
≥
0
}
.
{\displaystyle \{\,N(t):t\geq 0\,\}.\,}
When
D
i
{\displaystyle D_{i}}
are non-negative integer-valued random variables, then this compound Poisson process is known as a stuttering Poisson process.
Properties of the compound Poisson process
The expected value of a compound Poisson process can be calculated using a result known as Wald's equation as:
E
(
Y
(
t
)
)
=
E
(
D
1
+
⋯
+
D
N
(
t
)
)
=
E
(
N
(
t
)
)
E
(
D
1
)
=
E
(
N
(
t
)
)
E
(
D
)
=
λ
t
E
(
D
)
.
{\displaystyle \operatorname {E} (Y(t))=\operatorname {E} (D_{1}+\cdots +D_{N(t)})=\operatorname {E} (N(t))\operatorname {E} (D_{1})=\operatorname {E} (N(t))\operatorname {E} (D)=\lambda t\operatorname {E} (D).}
Making similar use of the law of total variance , the variance can be calculated as:
var
(
Y
(
t
)
)
=
E
(
var
(
Y
(
t
)
∣
N
(
t
)
)
)
+
var
(
E
(
Y
(
t
)
∣
N
(
t
)
)
)
=
E
(
N
(
t
)
var
(
D
)
)
+
var
(
N
(
t
)
E
(
D
)
)
=
var
(
D
)
E
(
N
(
t
)
)
+
E
(
D
)
2
var
(
N
(
t
)
)
=
var
(
D
)
λ
t
+
E
(
D
)
2
λ
t
=
λ
t
(
var
(
D
)
+
E
(
D
)
2
)
=
λ
t
E
(
D
2
)
.
{\displaystyle {\begin{aligned}\operatorname {var} (Y(t))&=\operatorname {E} (\operatorname {var} (Y(t)\mid N(t)))+\operatorname {var} (\operatorname {E} (Y(t)\mid N(t)))\\&=\operatorname {E} (N(t)\operatorname {var} (D))+\operatorname {var} (N(t)\operatorname {E} (D))\\&=\operatorname {var} (D)\operatorname {E} (N(t))+\operatorname {E} (D)^{2}\operatorname {var} (N(t))\\&=\operatorname {var} (D)\lambda t+\operatorname {E} (D)^{2}\lambda t\\&=\lambda t(\operatorname {var} (D)+\operatorname {E} (D)^{2})\\&=\lambda t\operatorname {E} (D^{2}).\end{aligned}}}
Lastly, using the law of total probability , the moment generating function can be given as follows:
Pr
(
Y
(
t
)
=
i
)
=
∑
n
Pr
(
Y
(
t
)
=
i
∣
N
(
t
)
=
n
)
Pr
(
N
(
t
)
=
n
)
{\displaystyle \Pr(Y(t)=i)=\sum _{n}\Pr(Y(t)=i\mid N(t)=n)\Pr(N(t)=n)}
E
(
e
s
Y
)
=
∑
i
e
s
i
Pr
(
Y
(
t
)
=
i
)
=
∑
i
e
s
i
∑
n
Pr
(
Y
(
t
)
=
i
∣
N
(
t
)
=
n
)
Pr
(
N
(
t
)
=
n
)
=
∑
n
Pr
(
N
(
t
)
=
n
)
∑
i
e
s
i
Pr
(
Y
(
t
)
=
i
∣
N
(
t
)
=
n
)
=
∑
n
Pr
(
N
(
t
)
=
n
)
∑
i
e
s
i
Pr
(
D
1
+
D
2
+
⋯
+
D
n
=
i
)
=
∑
n
Pr
(
N
(
t
)
=
n
)
M
D
(
s
)
n
=
∑
n
Pr
(
N
(
t
)
=
n
)
e
n
ln
(
M
D
(
s
)
)
=
M
N
(
t
)
(
ln
(
M
D
(
s
)
)
)
=
e
λ
t
(
M
D
(
s
)
−
1
)
.
{\displaystyle {\begin{aligned}\operatorname {E} (e^{sY})&=\sum _{i}e^{si}\Pr(Y(t)=i)\\&=\sum _{i}e^{si}\sum _{n}\Pr(Y(t)=i\mid N(t)=n)\Pr(N(t)=n)\\&=\sum _{n}\Pr(N(t)=n)\sum _{i}e^{si}\Pr(Y(t)=i\mid N(t)=n)\\&=\sum _{n}\Pr(N(t)=n)\sum _{i}e^{si}\Pr(D_{1}+D_{2}+\cdots +D_{n}=i)\\&=\sum _{n}\Pr(N(t)=n)M_{D}(s)^{n}\\&=\sum _{n}\Pr(N(t)=n)e^{n\ln(M_{D}(s))}\\&=M_{N(t)}(\ln(M_{D}(s)))\\&=e^{\lambda t\left(M_{D}(s)-1\right)}.\end{aligned}}}
Exponentiation of measures
Let N , Y , and D be as above. Let μ be the probability measure according to which D is distributed, i.e.
μ
(
A
)
=
Pr
(
D
∈
A
)
.
{\displaystyle \mu (A)=\Pr(D\in A).\,}
Let δ 0 be the trivial probability distribution putting all of the mass at zero. Then the probability distribution of Y (t ) is the measure
exp
(
λ
t
(
μ
−
δ
0
)
)
{\displaystyle \exp(\lambda t(\mu -\delta _{0}))\,}
where the exponential exp(ν ) of a finite measure ν on Borel subsets of the real line is defined by
exp
(
ν
)
=
∑
n
=
0
∞
ν
∗
n
n
!
{\displaystyle \exp(\nu )=\sum _{n=0}^{\infty }{\nu ^{*n} \over n!}}
and
ν
∗
n
=
ν
∗
⋯
∗
ν
⏟
n
factors
{\displaystyle \nu ^{*n}=\underbrace {\nu *\cdots *\nu } _{n{\text{ factors}}}}
is a convolution of measures, and the series converges weakly .
See also
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑