This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Isotopes of calcium" – news · newspapers · books · scholar · JSTOR (May 2018) (Learn how and when to remove this message) |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Ca) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Calcium (20Ca) has 26 known isotopes, ranging from Ca to Ca. There are five stable isotopes (Ca, Ca, Ca, Ca and Ca), plus one isotope (Ca) with such a long half-life that it is for all practical purposes stable. The most abundant isotope, Ca, as well as the rare Ca, are theoretically unstable on energetic grounds, but their decay has not been observed. Calcium also has a cosmogenic isotope, Ca, with half-life 99,400 years. Unlike cosmogenic isotopes that are produced in the air, Ca is produced by neutron activation of Ca. Most of its production is in the upper metre of the soil column, where the cosmogenic neutron flux is still strong enough. Ca has received much attention in stellar studies because it decays to K, a critical indicator of solar system anomalies. The most stable artificial isotopes are Ca with half-life 163 days and Ca with half-life 4.5 days. All other calcium isotopes have half-lives of minutes or less.
Stable Ca comprises about 97% of natural calcium and is mainly created by nucleosynthesis in large stars. Similarly to Ar, however, some atoms of Ca are radiogenic, created through the radioactive decay of K. While K–Ar dating has been used extensively in the geological sciences, the prevalence of Ca in nature initially impeded the proliferation of K-Ca dating in early studies, with only a handful of studies in the 20th century. Modern techniques using increasingly precise Thermal-Ionization (TIMS) and Collision-Cell Multi-Collector Inductively-coupled plasma mass spectrometry (CC-MC-ICP-MS) techniques, however, have been used for successful K–Ca age dating, as well as determining K losses from the lower continental crust and for source-tracing calcium contributions from various geologic reservoirs similar to Rb-Sr.
Stable isotope variations of calcium (most typically Ca/Ca or Ca/Ca, denoted as 'δCa' and 'δCa' in delta notation) are also widely used across the natural sciences for a number of applications, ranging from early determination of osteoporosis to quantifying volcanic eruption timescales. Other applications include: quantifying carbon sequestration efficiency in CO2 injection sites and understanding ocean acidification, exploring both ubiquitous and rare magmatic processes, such as formation of granites and carbonatites, tracing modern and ancient trophic webs including in dinosaurs, assessing weaning practices in ancient humans, and a plethora of other emerging applications.
List of isotopes
Nuclide |
Z | N | Isotopic mass (Da) |
Half-life |
Decay mode |
Daughter isotope |
Spin and parity |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Normal proportion | Range of variation | ||||||||||||||||||
Ca | 20 | 15 | 35.00557(22)# | 25.7(2) ms | β, p (95.8%) | Ar | 1/2+# | ||||||||||||
β, 2p (4.2%) | Cl | ||||||||||||||||||
β (rare) | K | ||||||||||||||||||
Ca | 20 | 16 | 35.993074(43) | 100.9(13) ms | β, p (51.2%) | Ar | 0+ | ||||||||||||
β (48.8%) | K | ||||||||||||||||||
Ca | 20 | 17 | 36.98589785(68) | 181.0(9) ms | β, p (76.8%) | Ar | 3/2+ | ||||||||||||
β (23.2%) | K | ||||||||||||||||||
Ca | 20 | 18 | 37.97631922(21) | 443.70(25) ms | β | K | 0+ | ||||||||||||
Ca | 20 | 19 | 38.97071081(64) | 860.3(8) ms | β | K | 3/2+ | ||||||||||||
Ca | 20 | 20 | 39.962590850(22) | Observationally stable | 0+ | 0.9694(16) | 0.96933–0.96947 | ||||||||||||
Ca | 20 | 21 | 40.96227791(15) | 9.94(15)×10 y | EC | K | 7/2− | Trace | |||||||||||
Ca | 20 | 22 | 41.95861778(16) | Stable | 0+ | 0.00647(23) | 0.00646–0.00648 | ||||||||||||
Ca | 20 | 23 | 42.95876638(24) | Stable | 7/2− | 0.00135(10) | 0.00135–0.00135 | ||||||||||||
Ca | 20 | 24 | 43.95548149(35) | Stable | 0+ | 0.0209(11) | 0.02082–0.02092 | ||||||||||||
Ca | 20 | 25 | 44.95618627(39) | 162.61(9) d | β | Sc | 7/2− | ||||||||||||
Ca | 20 | 26 | 45.9536877(24) | Observationally stable | 0+ | 4×10 | 4×10–4×10 | ||||||||||||
Ca | 20 | 27 | 46.9545411(24) | 4.536(3) d | β | Sc | 7/2− | ||||||||||||
Ca | 20 | 28 | 47.952522654(18) | 5.6(10)×10 y | ββ | Ti | 0+ | 0.00187(21) | 0.00186–0.00188 | ||||||||||
Ca | 20 | 29 | 48.95566263(19) | 8.718(6) min | β | Sc | 3/2− | ||||||||||||
Ca | 20 | 30 | 49.9574992(17) | 13.45(5) s | β | Sc | 0+ | ||||||||||||
Ca | 20 | 31 | 50.96099566(56) | 10.0(8) s | β | Sc | 3/2− | ||||||||||||
β, n? | Sc | ||||||||||||||||||
Ca | 20 | 32 | 51.96321365(72) | 4.6(3) s | β (>98%) | Sc | 0+ | ||||||||||||
β, n (<2%) | Sc | ||||||||||||||||||
Ca | 20 | 33 | 52.968451(47) | 461(90) ms | β (60%) | Sc | 1/2−# | ||||||||||||
β, n (40%) | Sc | ||||||||||||||||||
Ca | 20 | 34 | 53.972989(52) | 90(6) ms | β | Sc | 0+ | ||||||||||||
β, n? | Sc | ||||||||||||||||||
β, 2n? | Sc | ||||||||||||||||||
Ca | 20 | 35 | 54.97998(17) | 22(2) ms | β | Sc | 5/2−# | ||||||||||||
β, n? | Sc | ||||||||||||||||||
β, 2n? | Sc | ||||||||||||||||||
Ca | 20 | 36 | 55.98550(27) | 11(2) ms | β | Sc | 0+ | ||||||||||||
β, n? | Sc | ||||||||||||||||||
β, 2n? | Sc | ||||||||||||||||||
Ca | 20 | 37 | 56.99296(43)# | 8# ms | β? | Sc | 5/2−# | ||||||||||||
β, n? | Sc | ||||||||||||||||||
β, 2n? | Sc | ||||||||||||||||||
Ca | 20 | 38 | 57.99836(54)# | 4# ms | β? | Sc | 0+ | ||||||||||||
β, n? | Sc | ||||||||||||||||||
β, 2n? | Sc | ||||||||||||||||||
Ca | 20 | 39 | 59.00624(64)# | 5# ms | β? | Sc | 5/2−# | ||||||||||||
β, n? | Sc | ||||||||||||||||||
β, 2n? | Sc | ||||||||||||||||||
Ca | 20 | 40 | 60.01181(75)# | 2# ms | β? | Sc | 0+ | ||||||||||||
β, n? | Sc | ||||||||||||||||||
β, 2n? | Sc | ||||||||||||||||||
This table header & footer: |
- ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- Bold half-life – nearly stable, half-life longer than age of universe.
-
Modes of decay:
EC: Electron capture
n: Neutron emission p: Proton emission - Bold symbol as daughter – Daughter product is stable.
- ( ) spin value – Indicates spin with weak assignment arguments.
- # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- Heaviest observationally stable nuclide with equal numbers of protons and neutrons
- Believed to undergo double electron capture to Ar with a half-life no less than 9.9×10 y
- Cosmogenic nuclide
- Believed to undergo ββ decay to Ti
- Primordial radionuclide
- Believed to be capable of undergoing triple beta decay with very long partial half-life
- Lightest nuclide known to undergo double beta decay
- Theorized to also undergo β decay to Sc with a partial half-life exceeding 1.1
−0.6×10 years
Calcium-48
Main article: Calcium-48Calcium-48 is a doubly magic nucleus with 28 neutrons; unusually neutron-rich for a light primordial nucleus. It decays via double beta decay with an extremely long half-life of about 6.4×10 years, though single beta decay is also theoretically possible. This decay can analyzed with the sd nuclear shell model, and it is more energetic (4.27 MeV) than any other double beta decay. It can also be used as a precursor for neutron-rich and superheavy nuclei.
Calcium-60
Calcium-60 is the heaviest known isotope as of 2020. First observed in 2018 at Riken alongside Ca and seven isotopes of other elements, its existence suggests that there are additional even-N isotopes of calcium up to at least Ca, while Ca is probably the last bound isotope with odd N. Earlier predictions had estimated the neutron drip line to occur at Ca, with Ca unbound.
In the neutron-rich region, N = 40 becomes a magic number, so Ca was considered early on to be a possibly doubly magic nucleus, as is observed for the Ni isotone. However, subsequent spectroscopic measurements of the nearby nuclides Ca, Ca, and Ti instead predict that it should lie on the island of inversion known to exist around Cr.
References
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- "Standard Atomic Weights: Calcium". CIAAW. 1983.
- Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
- Marshall, B. D.; DePaolo, D. J. (1982-12-01). "Precise age determinations and petrogenetic studies using the KCa method". Geochimica et Cosmochimica Acta. 46 (12): 2537–2545. doi:10.1016/0016-7037(82)90376-3. ISSN 0016-7037.
- admin. "K-Ca dating and Ca isotope composition of the oldest Solar System lava, Erg Chech 002 | Geochemical Perspectives Letters". Retrieved 2024-10-16.
- admin. "Radiogenic Ca isotopes confirm post-formation K depletion of lower crust | Geochemical Perspectives Letters". Retrieved 2024-10-16.
- Antonelli, Michael A.; DePaolo, Donald J.; Christensen, John N.; Wotzlaw, Jörn-Frederik; Pester, Nicholas J.; Bachmann, Olivier (2021-09-16). "Radiogenic 40 Ca in Seawater: Implications for Modern and Ancient Ca Cycles". ACS Earth and Space Chemistry. 5 (9): 2481–2492. doi:10.1021/acsearthspacechem.1c00179. ISSN 2472-3452.
- Davenport, Jesse; Caro, Guillaume; France-Lanord, Christian (2022-12-01). "Decoupling of physical and chemical erosion in the Himalayas revealed by radiogenic Ca isotopes". Geochimica et Cosmochimica Acta. 338: 199–219. doi:10.1016/j.gca.2022.10.031. ISSN 0016-7037.
- Eisenhauer, A.; Müller, M.; Heuser, A.; Kolevica, A.; Glüer, C. -C.; Both, M.; Laue, C.; Hehn, U. v.; Kloth, S.; Shroff, R.; Schrezenmeir, J. (2019-06-01). "Calcium isotope ratios in blood and urine: A new biomarker for the diagnosis of osteoporosis". Bone Reports. 10: 100200. doi:10.1016/j.bonr.2019.100200. ISSN 2352-1872. PMC 6453776. PMID 30997369.
- Antonelli, Michael A.; Mittal, Tushar; McCarthy, Anders; Tripoli, Barbara; Watkins, James M.; DePaolo, Donald J. (2019-10-08). "Ca isotopes record rapid crystal growth in volcanic and subvolcanic systems". Proceedings of the National Academy of Sciences. 116 (41): 20315–20321. doi:10.1073/pnas.1908921116. ISSN 0027-8424. PMC 6789932. PMID 31548431.
- Pogge von Strandmann, Philip A. E.; Burton, Kevin W.; Snæbjörnsdóttir, Sandra O.; Sigfússon, Bergur; Aradóttir, Edda S.; Gunnarsson, Ingvi; Alfredsson, Helgi A.; Mesfin, Kiflom G.; Oelkers, Eric H.; Gislason, Sigurður R. (2019-04-30). "Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes". Nature Communications. 10 (1): 1983. doi:10.1038/s41467-019-10003-8. ISSN 2041-1723. PMC 6491611. PMID 31040283.
- Fantle, Matthew S.; Ridgwell, Andy (2020-08-05). "Towards an understanding of the Ca isotopic signal related to ocean acidification and alkalinity overshoots in the rock record". Chemical Geology. 547: 119672. doi:10.1016/j.chemgeo.2020.119672. ISSN 0009-2541.
- Antonelli, Michael A.; Yakymchuk, Chris; Schauble, Edwin A.; Foden, John; Janoušek, Vojtěch; Moyen, Jean-François; Hoffmann, Jan; Moynier, Frédéric; Bachmann, Olivier (2023-04-15). "Granite petrogenesis and the δ44Ca of continental crust". Earth and Planetary Science Letters. 608: 118080. doi:10.1016/j.epsl.2023.118080. hdl:20.500.11850/603069. ISSN 0012-821X.
- admin. "Calcium isotope fractionation during melt immiscibility and carbonatite petrogenesis | Geochemical Perspectives Letters". Retrieved 2024-10-16.
- Skulan, Joseph; DePaolo, Donald J.; Owens, Thomas L. (1997-06-01). "Biological control of calcium isotopic abundances in the global calcium cycle". Geochimica et Cosmochimica Acta. 61 (12): 2505–2510. doi:10.1016/S0016-7037(97)00047-1. ISSN 0016-7037.
- admin. "Calcium stable isotopes place Devonian conodonts as first level consumers | Geochemical Perspectives Letters". Retrieved 2024-10-16.
- Hassler, A.; Martin, J. E.; Amiot, R.; Tacail, T.; Godet, F. Arnaud; Allain, R.; Balter, V. (2018-04-11). "Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs". Proceedings of the Royal Society B: Biological Sciences. 285 (1876): 20180197. doi:10.1098/rspb.2018.0197. ISSN 0962-8452. PMC 5904318. PMID 29643213.
- Tacail, Théo; Thivichon-Prince, Béatrice; Martin, Jeremy E.; Charles, Cyril; Viriot, Laurent; Balter, Vincent (2017-06-13). "Assessing human weaning practices with calcium isotopes in tooth enamel". Proceedings of the National Academy of Sciences. 114 (24): 6268–6273. doi:10.1073/pnas.1704412114. ISSN 0027-8424. PMC 5474782. PMID 28559355.
- Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
- Aunola, M.; Suhonen, J.; Siiskonen, T. (1999). "Shell-model study of the highly forbidden beta decay Ca → Sc". EPL. 46 (5): 577. Bibcode:1999EL.....46..577A. doi:10.1209/epl/i1999-00301-2. S2CID 250836275.
- Arnold, R.; et al. (NEMO-3 Collaboration) (2016). "Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of Ca with the NEMO-3 detector". Physical Review D. 93 (11): 112008. arXiv:1604.01710. Bibcode:2016PhRvD..93k2008A. doi:10.1103/PhysRevD.93.112008.
- Balysh, A.; et al. (1996). "Double Beta Decay of Ca". Physical Review Letters. 77 (26): 5186–5189. arXiv:nucl-ex/9608001. Bibcode:1996PhRvL..77.5186B. doi:10.1103/PhysRevLett.77.5186. PMID 10062737.
- Notani, M.; et al. (2002). "New neutron-rich isotopes, Ne, Na and Si, produced by fragmentation of a 64A MeV Ca beam". Physics Letters B. 542 (1–2): 49–54. Bibcode:2002PhLB..542...49N. doi:10.1016/S0370-2693(02)02337-7.
- Oganessian, Yu. Ts.; et al. (October 2006). "Synthesis of the isotopes of elements 118 and 116 in the Cf and Cm + Ca fusion reactions". Physical Review C. 74 (4): 044602. Bibcode:2006PhRvC..74d4602O. doi:10.1103/PhysRevC.74.044602.
- ^ Tarasov, O. B.; Ahn, D. S.; Bazin, D.; et al. (11 July 2018). "Discovery of Ca and Implications For the Stability of Ca". Physical Review Letters. 121 (2): 022501. doi:10.1103/PhysRevLett.121.022501. PMID 30085743.
- Neufcourt, Léo; Cao, Yuchen; Nazarewicz, Witold; et al. (14 February 2019). "Neutron Drip Line in the Ca Region from Bayesian Model Averaging". Physical Review Letters. 122 (6): 062502. arXiv:1901.07632. doi:10.1103/PhysRevLett.122.062502. PMID 30822058.
- Gade, A.; Janssens, R. V. F.; Weisshaar, D.; et al. (21 March 2014). "Nuclear Structure Towards N = 40 Ca: In-Beam γ -Ray Spectroscopy of Ti". Physical Review Letters. 112 (11): 112503. arXiv:1402.5944. doi:10.1103/PhysRevLett.112.112503. PMID 24702356.
- ^ Cortés, M.L.; Rodriguez, W.; Doornenbal, P.; et al. (January 2020). "Shell evolution of N = 40 isotones towards Ca: First spectroscopy of Ti". Physics Letters B. 800: 135071. arXiv:1912.07887. doi:10.1016/j.physletb.2019.135071.
- Chen, S.; Browne, F.; Doornenbal, P.; et al. (August 2023). "Level structures of Ca cast doubt on a doubly magic Ca". Physics Letters B. 843: 138025. arXiv:2307.07077. doi:10.1016/j.physletb.2023.138025.
Further reading
- C. Michael Hogan. 2010. Calcium. ed. A. Jorgenson and C. Cleveland. Encyclopedia of Earth, National Council for Science and the Environment, Washington, D.C.
External links
- National Isotope Development Center Official website
- Calcium isotopes data from The Berkeley Laboratory Isotopes Project's