Misplaced Pages

Cav1.1

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from DHP receptor)

Mammalian protein found in humans
CACNA1S
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

2VAY

Identifiers
AliasesCACNA1S, CACNL1A3, CCHL1A3, Cav1.1, HOKPP, HOKPP1, MHS5, TTPP1, hypoPP, calcium voltage-gated channel subunit alpha1 S, DHPR
External IDsOMIM: 114208; MGI: 88294; HomoloGene: 37257; GeneCards: CACNA1S; OMA:CACNA1S - orthologs
Gene location (Human)
Chromosome 1 (human)
Chr.Chromosome 1 (human)
Chromosome 1 (human)Genomic location for CACNA1SGenomic location for CACNA1S
Band1q32.1Start201,039,512 bp
End201,112,451 bp
Gene location (Mouse)
Chromosome 1 (mouse)
Chr.Chromosome 1 (mouse)
Chromosome 1 (mouse)Genomic location for CACNA1SGenomic location for CACNA1S
Band1 E4|1 59.55 cMStart135,980,488 bp
End136,047,560 bp
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • glutes

  • muscle of thigh

  • triceps brachii muscle

  • vastus lateralis muscle

  • Skeletal muscle tissue of rectus abdominis

  • thoracic diaphragm

  • Skeletal muscle tissue of biceps brachii

  • gastrocnemius muscle

  • deltoid muscle

  • tibialis anterior muscle
Top expressed in
  • muscle of thigh

  • extensor digitorum longus muscle

  • plantaris muscle

  • triceps brachii muscle

  • ankle

  • medial head of gastrocnemius muscle

  • temporal muscle

  • sternocleidomastoid muscle

  • quadriceps femoris muscle

  • skeletal muscle tissue
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

779

12292

Ensembl

ENSG00000081248

ENSMUSG00000026407

UniProt

Q13698

Q02789

RefSeq (mRNA)

NM_000069

NM_001081023
NM_014193

RefSeq (protein)

NP_000060

NP_001074492
NP_055008
NP_001389878

Location (UCSC)Chr 1: 201.04 – 201.11 MbChr 1: 135.98 – 136.05 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

Cav1.1 also known as the calcium channel, voltage-dependent, L type, alpha 1S subunit, (CACNA1S), is a protein which in humans is encoded by the CACNA1S gene. It is also known as CACNL1A3 and the dihydropyridine receptor (DHPR, so named due to the blocking action DHP has on it).

Function

This gene encodes one of the five subunits of the slowly inactivating L-type voltage-dependent calcium channel in skeletal muscle cells. Mutations in this gene have been associated with hypokalemic periodic paralysis, thyrotoxic periodic paralysis and malignant hyperthermia susceptibility.

Cav1.1 is a voltage-dependent calcium channel found in the transverse tubule of muscles. In skeletal muscle it associates with the ryanodine receptor RyR1 of the sarcoplasmic reticulum via a mechanical linkage. It senses the voltage change caused by the end-plate potential from nervous stimulation and propagated by sodium channels as action potentials to the T-tubules. It was previously thought that when the muscle depolarises, the calcium channel opens, allowing calcium in and activating RyR1, which mediates much greater calcium release from the sarcoplasmic reticulum. This is the first part of the process of excitation-contraction coupling, which ultimately causes the muscle to contract. Calcium entry through Cav1.1 is not required in skeletal muscle, as it is in cardiac muscle; Cav1.1 undergoes a conformational change which allosterically activates RyR1.

Clinical significance

In hypokalemic periodic paralysis (HOKPP), the voltage sensors in domains 2 and 4 of Cav1.1 are mutated (loss-of-function), reducing the availability of the channel to sense depolarisation, and therefore it cannot activate the ryanodine receptor as efficiently. As a result, the muscle cannot contract very well and the patient is paralysed. The condition is hypokalemic because a low extracellular potassium ion concentration will cause the muscle to repolarise to the resting potential more quickly, so any calcium conductance that does occur cannot be sustained. It becomes more difficult to reach the threshold at which the muscle can contract, and even if this is reached then the muscle is more prone to relaxing. Because of this, the severity would be reduced if potassium ion concentrations are maintained. In contrast, hyperkalemic periodic paralysis refers to gain-of-function mutations in sodium channels that maintain muscle depolarisation and therefore are aggravated by high potassium ion concentrations.

The European Malignant Hyperthermia Group accepts two mutations in CACNA1S as diagnostic for malignant hyperthermia.

Blockers

Cav1.1 is blocked by dihydropyridine.

See also

References

  1. ^ GRCh38: Ensembl release 89: ENSG00000081248Ensembl, May 2017
  2. ^ GRCm38: Ensembl release 89: ENSMUSG00000026407Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: CACNA1S calcium channel, voltage-dependent, L type, alpha 1S subunit".
  6. Proenza C, O'Brien J, Nakai J, Mukherjee S, Allen PD, Beam KG (February 2002). "Identification of a region of RyR1 that participates in allosteric coupling with the alpha(1S) (Ca(V)1.1) II-III loop". J. Biol. Chem. 277 (8): 6530–5. doi:10.1074/jbc.M106471200. PMID 11726651.
  7. Jurkat-Rott K, Lehmann-Horn F (August 2005). "Muscle channelopathies and critical points in functional and genetic studies". J. Clin. Invest. 115 (8): 2000–9. doi:10.1172/JCI25525. PMC 1180551. PMID 16075040.
  8. "European Malignant Hyperthermia Group: Mutations in RYR1". Archived from the original on 2016-03-21. Retrieved 2015-05-14.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Membrane transport protein: ion channels (TC 1A)
Ca: Calcium channel
Ligand-gated
Voltage-gated
Na: Sodium channel
Constitutively active
Proton-gated
Voltage-gated
K: Potassium channel
Calcium-activated
Inward-rectifier
Tandem pore domain
Voltage-gated
Miscellaneous
Cl: Chloride channel
H: Proton channel
M: CNG cation channel
M: TRP cation channel
H2O (+ solutes): Porin
Cytoplasm: Gap junction
By gating mechanism
Ion channel class
see also disorders
Categories: