Misplaced Pages

Gamma/Gompertz distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Gamma Gompertz distribution)
Gamma/Gompertz distribution
Probability density functionGamma Gompertz cumulative distribution
Note: b=0.4, β=3
Cumulative distribution functionGamma Gompertz cumulative distribution
Parameters b , s , β > 0 {\displaystyle b,s,\beta >0\,\!}
Support x [ 0 , ) {\displaystyle x\in [0,\infty )\!}
PDF b s e b x β s / ( β 1 + e b x ) s + 1 where  b , s , β > 0 {\displaystyle bse^{bx}\beta ^{s}/\left(\beta -1+e^{bx}\right)^{s+1}{\text{where }}b,s,\beta >0}
CDF 1 β s / ( β 1 + e b x ) s , x > 0 , b , s , β > 0 {\displaystyle 1-\beta ^{s}/\left(\beta -1+e^{bx}\right)^{s},x>0,b,s,\beta >0}
1 e b s x , β = 1 {\displaystyle 1-e^{-bsx},\beta =1}
Mean = ( 1 / b ) ( 1 / s ) 2 F 1 ( s , 1 ; s + 1 ; ( β 1 ) / β ) , {\displaystyle =\left(1/b\right)\left(1/s\right){_{2}{\text{F}}_{1}}\left(s,1;s+1;\left(\beta -1\right)/\beta \right),}
            b , s > 0 , β 1 {\displaystyle b,s>0,\beta \neq 1}
= ( 1 / b ) [ β / ( β 1 ) ] ln ( β ) , {\displaystyle =\left(1/b\right)\left\ln \left(\beta \right),}
            b > 0 , s = 1 , β 1 {\displaystyle b>0,s=1,\beta \neq 1}
= 1 / ( b s ) , b , s > 0 , β = 1 {\displaystyle =1/\left(bs\right),\quad b,s>0,\beta =1}
Median ( 1 / b ) ln { β [ ( 1 / 2 ) 1 / s 1 ] + 1 } {\displaystyle \left(1/b\right)\ln\{\beta \left+1\}}
Mode x = ( 1 / b ) ln [ ( 1 / s ) ( β 1 ) ] , with  0 < F ( x ) < 1 ( β s ) s / [ ( β 1 ) ( s + 1 ) ] s < 0.632121 , β > s + 1 = 0 , β s + 1 {\displaystyle {\begin{aligned}x^{*}&=(1/b)\ln \left,\\&{\text{with }}0<{\text{F}}(x^{*})<1-(\beta s)^{s}/\left^{s}<0.632121,\\&\beta >s+1\\&=0,\quad \beta \leq s+1\\\end{aligned}}}
Variance = 2 ( 1 / b 2 ) ( 1 / s 2 ) β s 3 F 2 ( s , s , s ; s + 1 , s + 1 ; 1 β ) {\displaystyle =2(1/b^{2})(1/s^{2})\beta ^{s}{_{3}{\text{F}}_{2}}(s,s,s;s+1,s+1;1-\beta )}
            E 2 ( τ | b , s , β ) , β 1 {\displaystyle -{\text{E}}^{2}(\tau |b,s,\beta ),\quad \beta \neq 1}
= ( 1 / b 2 ) ( 1 / s 2 ) , β = 1 {\displaystyle =(1/b^{2})(1/s^{2}),\quad \beta =1}

with {\displaystyle {\text{with}}}

3 F 2 ( a , b , c ; d , e ; z ) = k = 0 { ( a ) k ( b ) k ( c ) k / [ ( d ) k ( e ) k ] } z k / k ! {\displaystyle {_{3}{\text{F}}_{2}}(a,b,c;d,e;z)=\sum _{k=0}^{\infty }\{(a)_{k}(b)_{k}(c)_{k}/\}z^{k}/k!}

and {\displaystyle {\text{and}}}

( a ) k = Γ ( a + k ) / Γ ( a ) {\displaystyle (a)_{k}=\Gamma (a+k)/\Gamma (a)}
MGF E ( e t x ) {\displaystyle {\text{E}}(e^{-tx})}
= β s [ s b / ( t + s b ) ] 2 F 1 ( s + 1 , ( t / b ) + s ; ( t / b ) + s + 1 ; 1 β ) , {\displaystyle =\beta ^{s}{_{2}{\text{F}}_{1}}(s+1,(t/b)+s;(t/b)+s+1;1-\beta ),}
β 1 {\displaystyle \quad \beta \neq 1}
= s b / ( t + s b ) , β = 1 {\displaystyle =sb/(t+sb),\quad \beta =1}
with  2 F 1 ( a , b ; c ; z ) = k = 0 [ ( a ) k ( b ) k / ( c ) k ] z k / k ! {\displaystyle {\text{with }}{_{2}{\text{F}}_{1}}(a,b;c;z)=\sum _{k=0}^{\infty }z^{k}/k!}

In probability and statistics, the Gamma/Gompertz distribution is a continuous probability distribution. It has been used as an aggregate-level model of customer lifetime and a model of mortality risks.

Specification

Probability density function

The probability density function of the Gamma/Gompertz distribution is:

f ( x ; b , s , β ) = b s e b x β s ( β 1 + e b x ) s + 1 {\displaystyle f(x;b,s,\beta )={\frac {bse^{bx}\beta ^{s}}{\left(\beta -1+e^{bx}\right)^{s+1}}}}

where b > 0 {\displaystyle b>0} is the scale parameter and β , s > 0 {\displaystyle \beta ,s>0\,\!} are the shape parameters of the Gamma/Gompertz distribution.

Cumulative distribution function

The cumulative distribution function of the Gamma/Gompertz distribution is:

F ( x ; b , s , β ) = 1 β s ( β 1 + e b x ) s ,   x > 0 ,   b , s , β > 0 = 1 e b s x ,   β = 1 {\displaystyle {\begin{aligned}F(x;b,s,\beta )&=1-{\frac {\beta ^{s}}{\left(\beta -1+e^{bx}\right)^{s}}},{\ }x>0,{\ }b,s,\beta >0\\&=1-e^{-bsx},{\ }\beta =1\\\end{aligned}}}

Moment generating function

The moment generating function is given by:

E ( e t x ) = { β s s b t + s b   2 F 1 ( s + 1 , ( t / b ) + s ; ( t / b ) + s + 1 ; 1 β ) , β 1 ; s b t + s b , β = 1. {\displaystyle {\begin{aligned}{\text{E}}(e^{-tx})={\begin{cases}\displaystyle \beta ^{s}{\frac {sb}{t+sb}}{\ }{_{2}{\text{F}}_{1}}(s+1,(t/b)+s;(t/b)+s+1;1-\beta ),&\beta \neq 1;\\\displaystyle {\frac {sb}{t+sb}},&\beta =1.\end{cases}}\end{aligned}}}

where 2 F 1 ( a , b ; c ; z ) = k = 0 [ ( a ) k ( b ) k / ( c ) k ] z k / k ! {\displaystyle {_{2}{\text{F}}_{1}}(a,b;c;z)=\sum _{k=0}^{\infty }z^{k}/k!} is a Hypergeometric function.

Properties

The Gamma/Gompertz distribution is a flexible distribution that can be skewed to the right or to the left.

Related distributions

  • When β = 1, this reduces to an Exponential distribution with parameter sb.
  • The gamma distribution is a natural conjugate prior to a Gompertz likelihood with known, scale parameter b . {\displaystyle b\,\!.}
  • When the shape parameter η {\displaystyle \eta \,\!} of a Gompertz distribution varies according to a gamma distribution with shape parameter α {\displaystyle \alpha \,\!} and scale parameter β {\displaystyle \beta \,\!} (mean = α / β {\displaystyle \alpha /\beta \,\!} ), the distribution of x {\displaystyle x} is Gamma/Gompertz.

See also

Notes

  1. ^ Bemmaor, A.C.; Glady, N. (2012)

References

Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Category: