Misplaced Pages

Iodide

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Iodides) Ion, and compounds containing the ion "i-" redirects here. For the Internet-related prefix i-, see Wiktionary's entry i-.
Iodide
Names
Systematic IUPAC name Iodide
Identifiers
CAS Number
3D model (JSmol)
Beilstein Reference 3587184
ChEBI
ChEMBL
ChemSpider
Gmelin Reference 14912
KEGG
PubChem CID
UNII
InChI
  • InChI=1S/HI/h1H/p-1Key: XMBWDFGMSWQBCA-UHFFFAOYSA-M
SMILES
Properties
Chemical formula I
Molar mass 126.90447 g·mol
Conjugate acid Hydrogen iodide
Thermochemistry
Std molar
entropy
(S298)
169.26 J K mol
Related compounds
Other anions Fluoride

Chloride
Bromide

Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

An iodide ion is the ion I. Compounds with iodine in formal oxidation state −1 are called iodides. In everyday life, iodide is most commonly encountered as a component of iodized salt, which many governments mandate. Worldwide, iodine deficiency affects two billion people and is the leading preventable cause of intellectual disability.

Structure and characteristics of inorganic iodides

Iodide is one of the largest monatomic anions. It is assigned a radius of around 206 picometers. For comparison, the lighter halides are considerably smaller: bromide (196 pm), chloride (181 pm), and fluoride (133 pm). In part because of its size, iodide forms relatively weak bonds with most elements.

Most iodide salts are soluble in water, but often less so than the related chlorides and bromides. Iodide, being large, is less hydrophilic compared to the smaller anions. One consequence of this is that sodium iodide is highly soluble in acetone, whereas sodium chloride is not. The low solubility of silver iodide and lead iodide reflects the covalent character of these metal iodides. A test for the presence of iodide ions is the formation of yellow precipitates of these compounds upon treatment of a solution of silver nitrate or lead(II) nitrate.

Aqueous solutions of iodide salts dissolve iodine better than pure water. This effect is due to the formation of the triiodide ion, which is brown:

I + I2 ⇌ I
3

Redox, including antioxidant properties

Iodide salts are mild reducing agents and many react with oxygen to give iodine. A reducing agent is a chemical term for an antioxidant. Its antioxidant properties can be expressed quantitatively as a redox potential :

2I ⇌  I2 +       E° = 0.54 volts (versus SHE)

Because iodide is easily oxidized, some enzymes readily convert it into electrophilic iodinating agents, as required for the biosynthesis of myriad iodide-containing natural products. Iodide can function as an antioxidant reducing species that can destroy ozone and reactive oxygen species such as hydrogen peroxide:

2 I + peroxidase + H2O2 + tyrosine, histidine, lipid, etc. → iodo-compounds + H2O + 2 e (antioxidants).

Representative iodides

Compound Formula Appearance Use or occurrence
Potassium iodide KI white crystals iodine component of iodized salt
Hydrogen iodide HI colourless gas strong mineral acid
Silver iodide AgI yellow powder that darkens in light photoactive component of silver-based photographic film
Thyroxine
(3,5,3′,5′-tetraiodothyronine)
C15H11I4NO4 pale yellow solid hormone essential for human health

Natural occurrence

Iodargyrite—natural, crystalline silver iodide—is the most common iodide mineral currently known. Iodide anions may sometimes also be found combined with mercury, copper and lead, but minerals with such compositions are even more scarce.

Other oxoanions

Iodine can assume oxidation states of −1, +1, +3, +5, or +7. A number of neutral iodine oxides are also known.

Iodine oxidation state −1 +1 +3 +5 +7
Name iodide hypoiodite iodite iodate periodate
Formula I IO IO
2
IO
3
IO
4 or IO
6

References

  1. "Iodide - PubChem Public Chemical Database". The PubChem Project. USA: National Center for Biotechnology Information.
  2. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  3. McNeil, Donald G. Jr (2006-12-16). "In Raising the World's I.Q., the Secret's in the Salt". New York Times. Retrieved 2008-12-04.
  4. Pillar, Elizabeth A.; Guzman, Marcelo I.; Rodriguez, Jose M. (2013-10-01). "Conversion of Iodide to Hypoiodous Acid and Iodine in Aqueous Microdroplets Exposed to Ozone". Environmental Science & Technology. 47 (19): 10971–10979. Bibcode:2013EnST...4710971P. doi:10.1021/es401700h. ISSN 0013-936X. PMID 23987087.
  5. Küpper FC; Carpenter LJ; McFiggans GB; et al. (2008). "Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry" (Free full text). Proceedings of the National Academy of Sciences of the United States of America. 105 (19): 6954–8. Bibcode:2008PNAS..105.6954K. doi:10.1073/pnas.0709959105. PMC 2383960. PMID 18458346.
  6. "Mineral/rock/commodity names containing 'iodide'". mindat.org. Retrieved 2022-08-09.

External links

Iodine compounds
Iodine(−I)
Iodine(I)
Iodine(II)
Iodine(III)
Iodine(IV)
Iodine(V)
Iodine(VII)
Salts and covalent derivatives of the iodide ion
HI
+H
He
LiI BeI2 BI3
+BO3
CI4
+C
NI3
NH4I
+N
I2O4
I2O5
I2O6
I4O9
IF
IF3
IF5
IF7
Ne
NaI MgI2 AlI
AlI3
SiI4 PI3
P2I4
+P
PI5
S2I2 ICl
ICl3
Ar
KI CaI2 ScI3 TiI2
TiI3
TiI4
VI2
VI3
CrI2
CrI3
CrI4
MnI2 FeI2
FeI3
CoI2 NiI2
-Ni
CuI ZnI2 GaI
GaI3
GeI2
GeI4
+Ge
AsI3
As2I4
+As
Se IBr
IBr3
Kr
RbI
RbI3
SrI2 YI3 ZrI2
ZrI3
ZrI4
NbI4
NbI5
MoI2
MoI3
TcI3 RuI3 RhI3 PdI2 AgI CdI2 InI
InI3
SnI2
SnI4
SbI3
+Sb
TeI4
+Te
I
I
3
Xe
CsI
CsI3
BaI2   LuI3 HfI3
HfI4
TaI4
TaI5
WI2
WI3
WI4
ReI3
ReI
4
OsI
OsI2
OsI3
IrI3
IrI
4
PtI2
PtI4
AuI
AuI3
Hg2I2
HgI2
TlI
TlI3
PbI2 BiI3 PoI2
PoI4
AtI Rn
Fr RaI2   Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
LaI2
LaI3
CeI2
CeI3
PrI2
PrI3
NdI2
NdI3
PmI3 SmI2
SmI3
EuI2
EuI3
GdI2
GdI3
TbI3 DyI2
DyI
3
HoI3 ErI3 TmI2
TmI3
YbI2
YbI3
AcI3 ThI2
ThI3
ThI4
PaI4
PaI5
UI3
UI4
NpI3 PuI3 AmI2
AmI3
CmI3 BkI
3
CfI
2

CfI
3
EsI2
EsI3
Fm Md No
Monatomic anion compounds
Group 1
Group 13
Group 14
Group 15 (Pnictides)
Group 16 (Chalcogenides)
Group 17 (Halides)
Categories: