Misplaced Pages

K-space (functional analysis)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, more specifically in functional analysis, a K-space is an F-space V {\displaystyle V} such that every extension of F-spaces (or twisted sum) of the form 0 R X V 0. {\displaystyle 0\rightarrow \mathbb {R} \rightarrow X\rightarrow V\rightarrow 0.\,\!} is equivalent to the trivial one 0 R R × V V 0. {\displaystyle 0\rightarrow \mathbb {R} \rightarrow \mathbb {R} \times V\rightarrow V\rightarrow 0.\,\!} where R {\displaystyle \mathbb {R} } is the real line.

Examples

The p {\displaystyle \ell ^{p}} spaces for 0 < p < 1 {\displaystyle 0<p<1} are K-spaces, as are all finite dimensional Banach spaces.

N. J. Kalton and N. P. Roberts proved that the Banach space 1 {\displaystyle \ell ^{1}} is not a K-space.

See also

References

  1. ^ Kalton, N. J.; Peck, N. T.; Roberts, James W. An F-space sampler. London Mathematical Society Lecture Note Series, 89. Cambridge University Press, Cambridge, 1984. xii+240 pp. ISBN 0-521-27585-7
Functional analysis (topicsglossary)
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Topological vector spaces (TVSs)
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
Categories: