Misplaced Pages

LB-space

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, an LB-space, also written (LB)-space, is a topological vector space X {\displaystyle X} that is a locally convex inductive limit of a countable inductive system ( X n , i n m ) {\displaystyle (X_{n},i_{nm})} of Banach spaces. This means that X {\displaystyle X} is a direct limit of a direct system ( X n , i n m ) {\displaystyle \left(X_{n},i_{nm}\right)} in the category of locally convex topological vector spaces and each X n {\displaystyle X_{n}} is a Banach space.

If each of the bonding maps i n m {\displaystyle i_{nm}} is an embedding of TVSs then the LB-space is called a strict LB-space. This means that the topology induced on X n {\displaystyle X_{n}} by X n + 1 {\displaystyle X_{n+1}} is identical to the original topology on X n . {\displaystyle X_{n}.} Some authors (e.g. Schaefer) define the term "LB-space" to mean "strict LB-space."

Definition

The topology on X {\displaystyle X} can be described by specifying that an absolutely convex subset U {\displaystyle U} is a neighborhood of 0 {\displaystyle 0} if and only if U X n {\displaystyle U\cap X_{n}} is an absolutely convex neighborhood of 0 {\displaystyle 0} in X n {\displaystyle X_{n}} for every n . {\displaystyle n.}

Properties

A strict LB-space is complete, barrelled, and bornological (and thus ultrabornological).

Examples

If D {\displaystyle D} is a locally compact topological space that is countable at infinity (that is, it is equal to a countable union of compact subspaces) then the space C c ( D ) {\displaystyle C_{c}(D)} of all continuous, complex-valued functions on D {\displaystyle D} with compact support is a strict LB-space. For any compact subset K D , {\displaystyle K\subseteq D,} let C c ( K ) {\displaystyle C_{c}(K)} denote the Banach space of complex-valued functions that are supported by K {\displaystyle K} with the uniform norm and order the family of compact subsets of D {\displaystyle D} by inclusion.

Final topology on the direct limit of finite-dimensional Euclidean spaces

Let

R   :=   { ( x 1 , x 2 , ) R N   :    all but finitely many  x i  are equal to 0  } , {\displaystyle {\begin{alignedat}{4}\mathbb {R} ^{\infty }~&:=~\left\{\left(x_{1},x_{2},\ldots \right)\in \mathbb {R} ^{\mathbb {N} }~:~{\text{ all but finitely many }}x_{i}{\text{ are equal to 0 }}\right\},\end{alignedat}}}

denote the space of finite sequences, where R N {\displaystyle \mathbb {R} ^{\mathbb {N} }} denotes the space of all real sequences. For every natural number n N , {\displaystyle n\in \mathbb {N} ,} let R n {\displaystyle \mathbb {R} ^{n}} denote the usual Euclidean space endowed with the Euclidean topology and let In R n : R n R {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}:\mathbb {R} ^{n}\to \mathbb {R} ^{\infty }} denote the canonical inclusion defined by In R n ( x 1 , , x n ) := ( x 1 , , x n , 0 , 0 , ) {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}\left(x_{1},\ldots ,x_{n}\right):=\left(x_{1},\ldots ,x_{n},0,0,\ldots \right)} so that its image is

Im ( In R n ) = { ( x 1 , , x n , 0 , 0 , )   :   x 1 , , x n R } = R n × { ( 0 , 0 , ) } {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)=\left\{\left(x_{1},\ldots ,x_{n},0,0,\ldots \right)~:~x_{1},\ldots ,x_{n}\in \mathbb {R} \right\}=\mathbb {R} ^{n}\times \left\{(0,0,\ldots )\right\}}

and consequently,

R = n N Im ( In R n ) . {\displaystyle \mathbb {R} ^{\infty }=\bigcup _{n\in \mathbb {N} }\operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right).}

Endow the set R {\displaystyle \mathbb {R} ^{\infty }} with the final topology τ {\displaystyle \tau ^{\infty }} induced by the family F := { In R n   :   n N } {\displaystyle {\mathcal {F}}:=\left\{\;\operatorname {In} _{\mathbb {R} ^{n}}~:~n\in \mathbb {N} \;\right\}} of all canonical inclusions. With this topology, R {\displaystyle \mathbb {R} ^{\infty }} becomes a complete Hausdorff locally convex sequential topological vector space that is not a Fréchet–Urysohn space. The topology τ {\displaystyle \tau ^{\infty }} is strictly finer than the subspace topology induced on R {\displaystyle \mathbb {R} ^{\infty }} by R N , {\displaystyle \mathbb {R} ^{\mathbb {N} },} where R N {\displaystyle \mathbb {R} ^{\mathbb {N} }} is endowed with its usual product topology. Endow the image Im ( In R n ) {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} with the final topology induced on it by the bijection In R n : R n Im ( In R n ) ; {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}:\mathbb {R} ^{n}\to \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right);} that is, it is endowed with the Euclidean topology transferred to it from R n {\displaystyle \mathbb {R} ^{n}} via In R n . {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}.} This topology on Im ( In R n ) {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} is equal to the subspace topology induced on it by ( R , τ ) . {\displaystyle \left(\mathbb {R} ^{\infty },\tau ^{\infty }\right).} A subset S R {\displaystyle S\subseteq \mathbb {R} ^{\infty }} is open (resp. closed) in ( R , τ ) {\displaystyle \left(\mathbb {R} ^{\infty },\tau ^{\infty }\right)} if and only if for every n N , {\displaystyle n\in \mathbb {N} ,} the set S Im ( In R n ) {\displaystyle S\cap \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} is an open (resp. closed) subset of Im ( In R n ) . {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right).} The topology τ {\displaystyle \tau ^{\infty }} is coherent with family of subspaces S := { Im ( In R n )   :   n N } . {\displaystyle \mathbb {S} :=\left\{\;\operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)~:~n\in \mathbb {N} \;\right\}.} This makes ( R , τ ) {\displaystyle \left(\mathbb {R} ^{\infty },\tau ^{\infty }\right)} into an LB-space. Consequently, if v R {\displaystyle v\in \mathbb {R} ^{\infty }} and v {\displaystyle v_{\bullet }} is a sequence in R {\displaystyle \mathbb {R} ^{\infty }} then v v {\displaystyle v_{\bullet }\to v} in ( R , τ ) {\displaystyle \left(\mathbb {R} ^{\infty },\tau ^{\infty }\right)} if and only if there exists some n N {\displaystyle n\in \mathbb {N} } such that both v {\displaystyle v} and v {\displaystyle v_{\bullet }} are contained in Im ( In R n ) {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} and v v {\displaystyle v_{\bullet }\to v} in Im ( In R n ) . {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right).}

Often, for every n N , {\displaystyle n\in \mathbb {N} ,} the canonical inclusion In R n {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}} is used to identify R n {\displaystyle \mathbb {R} ^{n}} with its image Im ( In R n ) {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} in R ; {\displaystyle \mathbb {R} ^{\infty };} explicitly, the elements ( x 1 , , x n ) R n {\displaystyle \left(x_{1},\ldots ,x_{n}\right)\in \mathbb {R} ^{n}} and ( x 1 , , x n , 0 , 0 , 0 , ) {\displaystyle \left(x_{1},\ldots ,x_{n},0,0,0,\ldots \right)} are identified together. Under this identification, ( ( R , τ ) , ( In R n ) n N ) {\displaystyle \left(\left(\mathbb {R} ^{\infty },\tau ^{\infty }\right),\left(\operatorname {In} _{\mathbb {R} ^{n}}\right)_{n\in \mathbb {N} }\right)} becomes a direct limit of the direct system ( ( R n ) n N , ( In R m R n ) m n  in  N , N ) , {\displaystyle \left(\left(\mathbb {R} ^{n}\right)_{n\in \mathbb {N} },\left(\operatorname {In} _{\mathbb {R} ^{m}}^{\mathbb {R} ^{n}}\right)_{m\leq n{\text{ in }}\mathbb {N} },\mathbb {N} \right),} where for every m n , {\displaystyle m\leq n,} the map In R m R n : R m R n {\displaystyle \operatorname {In} _{\mathbb {R} ^{m}}^{\mathbb {R} ^{n}}:\mathbb {R} ^{m}\to \mathbb {R} ^{n}} is the canonical inclusion defined by In R m R n ( x 1 , , x m ) := ( x 1 , , x m , 0 , , 0 ) , {\displaystyle \operatorname {In} _{\mathbb {R} ^{m}}^{\mathbb {R} ^{n}}\left(x_{1},\ldots ,x_{m}\right):=\left(x_{1},\ldots ,x_{m},0,\ldots ,0\right),} where there are n m {\displaystyle n-m} trailing zeros.

Counter-examples

There exists a bornological LB-space whose strong bidual is not bornological. There exists an LB-space that is not quasi-complete.

See also

  • DF-space – class of special local-convex spacePages displaying wikidata descriptions as a fallback
  • Direct limit – Special case of colimit in category theory
  • Final topology – Finest topology making some functions continuous
  • F-space – Topological vector space with a complete translation-invariant metric
  • LF-space – Topological vector space

Citations

  1. Schaefer & Wolff 1999, pp. 55–61.
  2. ^ Schaefer & Wolff 1999, pp. 60–63.
  3. ^ Schaefer & Wolff 1999, pp. 57–58.
  4. ^ Khaleelulla 1982, pp. 28–63.

References

Functional analysis (topicsglossary)
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Topological vector spaces (TVSs)
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
Category: