In functional analysis and related areas of mathematics, an ultrabarrelled space is a topological vector spaces (TVS) for which every ultrabarrel is a neighbourhood of the origin.
Definition
A subset of a TVS is called an ultrabarrel if it is a closed and balanced subset of and if there exists a sequence of closed balanced and absorbing subsets of such that for all In this case, is called a defining sequence for A TVS is called ultrabarrelled if every ultrabarrel in is a neighbourhood of the origin.
Properties
A locally convex ultrabarrelled space is a barrelled space. Every ultrabarrelled space is a quasi-ultrabarrelled space.
Examples and sufficient conditions
Complete and metrizable TVSs are ultrabarrelled. If is a complete locally bounded non-locally convex TVS and if is a closed balanced and bounded neighborhood of the origin, then is an ultrabarrel that is not convex and has a defining sequence consisting of non-convex sets.
Counter-examples
There exist barrelled spaces that are not ultrabarrelled. There exist TVSs that are complete and metrizable (and thus ultrabarrelled) but not barrelled.
See also
- Barrelled space – Type of topological vector space
- Countably barrelled space
- Countably quasi-barrelled space
- Infrabarreled space
- Uniform boundedness principle#Generalisations – A theorem stating that pointwise boundedness implies uniform boundedness
Citations
- ^ Khaleelulla 1982, pp. 65–76.
Bibliography
- Bourbaki, Nicolas (1950). "Sur certains espaces vectoriels topologiques". Annales de l'Institut Fourier (in French). 2: 5–16 (1951). doi:10.5802/aif.16. MR 0042609.
- Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. Vol. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN 978-3-540-09096-0. OCLC 4493665.
- Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
- Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Robertson, Alex P.; Robertson, Wendy J. (1964). Topological vector spaces. Cambridge Tracts in Mathematics. Vol. 53. Cambridge University Press. pp. 65–75.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- Trèves, François (2006) . Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
Functional analysis (topics – glossary) | |||||
---|---|---|---|---|---|
Spaces |
| ||||
Theorems | |||||
Operators | |||||
Algebras | |||||
Open problems | |||||
Applications | |||||
Advanced topics | |||||
Boundedness and bornology | |
---|---|
Basic concepts | |
Operators | |
Subsets | |
Related spaces |
Topological vector spaces (TVSs) | |
---|---|
Basic concepts | |
Main results | |
Maps | |
Types of sets | |
Set operations | |
Types of TVSs |
|